MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brovex Structured version   Visualization version   GIF version

Theorem brovex 8009
Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.)
Hypotheses
Ref Expression
brovex.1 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶)
brovex.2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸))
Assertion
Ref Expression
brovex (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem brovex
StepHypRef Expression
1 df-br 5071 . . 3 (𝐹(𝑉𝑂𝐸)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (𝑉𝑂𝐸))
2 ne0i 4265 . . . 4 (⟨𝐹, 𝑃⟩ ∈ (𝑉𝑂𝐸) → (𝑉𝑂𝐸) ≠ ∅)
3 brovex.1 . . . . . 6 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶)
43mpondm0 7488 . . . . 5 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑂𝐸) = ∅)
54necon1ai 2970 . . . 4 ((𝑉𝑂𝐸) ≠ ∅ → (𝑉 ∈ V ∧ 𝐸 ∈ V))
6 brovex.2 . . . . . . 7 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸))
7 brrelex12 5630 . . . . . . 7 ((Rel (𝑉𝑂𝐸) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
86, 7sylan 579 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
9 id 22 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
108, 9syldan 590 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1110ex 412 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
122, 5, 113syl 18 . . 3 (⟨𝐹, 𝑃⟩ ∈ (𝑉𝑂𝐸) → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
131, 12sylbi 216 . 2 (𝐹(𝑉𝑂𝐸)𝑃 → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
1413pm2.43i 52 1 (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  c0 4253  cop 4564   class class class wbr 5070  Rel wrel 5585  (class class class)co 7255  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-dm 5590  df-iota 6376  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  brovmpoex  8010
  Copyright terms: Public domain W3C validator