| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brovex | Structured version Visualization version GIF version | ||
| Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.) |
| Ref | Expression |
|---|---|
| brovex.1 | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) |
| brovex.2 | ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸)) |
| Ref | Expression |
|---|---|
| brovex | ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5108 | . . 3 ⊢ (𝐹(𝑉𝑂𝐸)𝑃 ↔ 〈𝐹, 𝑃〉 ∈ (𝑉𝑂𝐸)) | |
| 2 | ne0i 4304 | . . . 4 ⊢ (〈𝐹, 𝑃〉 ∈ (𝑉𝑂𝐸) → (𝑉𝑂𝐸) ≠ ∅) | |
| 3 | brovex.1 | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) | |
| 4 | 3 | mpondm0 7629 | . . . . 5 ⊢ (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑂𝐸) = ∅) |
| 5 | 4 | necon1ai 2952 | . . . 4 ⊢ ((𝑉𝑂𝐸) ≠ ∅ → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
| 6 | brovex.2 | . . . . . . 7 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸)) | |
| 7 | brrelex12 5690 | . . . . . . 7 ⊢ ((Rel (𝑉𝑂𝐸) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 8 | 6, 7 | sylan 580 | . . . . . 6 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V)) |
| 9 | id 22 | . . . . . 6 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) | |
| 10 | 8, 9 | syldan 591 | . . . . 5 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
| 11 | 10 | ex 412 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) |
| 12 | 2, 5, 11 | 3syl 18 | . . 3 ⊢ (〈𝐹, 𝑃〉 ∈ (𝑉𝑂𝐸) → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) |
| 13 | 1, 12 | sylbi 217 | . 2 ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))) |
| 14 | 13 | pm2.43i 52 | 1 ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 〈cop 4595 class class class wbr 5107 Rel wrel 5643 (class class class)co 7387 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: brovmpoex 8202 |
| Copyright terms: Public domain | W3C validator |