MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brovex Structured version   Visualization version   GIF version

Theorem brovex 7882
Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.)
Hypotheses
Ref Expression
brovex.1 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶)
brovex.2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸))
Assertion
Ref Expression
brovex (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem brovex
StepHypRef Expression
1 df-br 5059 . . 3 (𝐹(𝑉𝑂𝐸)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (𝑉𝑂𝐸))
2 ne0i 4299 . . . 4 (⟨𝐹, 𝑃⟩ ∈ (𝑉𝑂𝐸) → (𝑉𝑂𝐸) ≠ ∅)
3 brovex.1 . . . . . 6 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶)
43mpondm0 7380 . . . . 5 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑂𝐸) = ∅)
54necon1ai 3043 . . . 4 ((𝑉𝑂𝐸) ≠ ∅ → (𝑉 ∈ V ∧ 𝐸 ∈ V))
6 brovex.2 . . . . . . 7 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸))
7 brrelex12 5598 . . . . . . 7 ((Rel (𝑉𝑂𝐸) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
86, 7sylan 582 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
9 id 22 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
108, 9syldan 593 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1110ex 415 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
122, 5, 113syl 18 . . 3 (⟨𝐹, 𝑃⟩ ∈ (𝑉𝑂𝐸) → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
131, 12sylbi 219 . 2 (𝐹(𝑉𝑂𝐸)𝑃 → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
1413pm2.43i 52 1 (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  c0 4290  cop 4566   class class class wbr 5058  Rel wrel 5554  (class class class)co 7150  cmpo 7152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-xp 5555  df-rel 5556  df-dm 5559  df-iota 6308  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155
This theorem is referenced by:  brovmpoex  7883
  Copyright terms: Public domain W3C validator