MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brovex Structured version   Visualization version   GIF version

Theorem brovex 8203
Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.)
Hypotheses
Ref Expression
brovex.1 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶)
brovex.2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸))
Assertion
Ref Expression
brovex (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem brovex
StepHypRef Expression
1 df-br 5140 . . 3 (𝐹(𝑉𝑂𝐸)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (𝑉𝑂𝐸))
2 ne0i 4327 . . . 4 (⟨𝐹, 𝑃⟩ ∈ (𝑉𝑂𝐸) → (𝑉𝑂𝐸) ≠ ∅)
3 brovex.1 . . . . . 6 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶)
43mpondm0 7641 . . . . 5 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑂𝐸) = ∅)
54necon1ai 2960 . . . 4 ((𝑉𝑂𝐸) ≠ ∅ → (𝑉 ∈ V ∧ 𝐸 ∈ V))
6 brovex.2 . . . . . . 7 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸))
7 brrelex12 5719 . . . . . . 7 ((Rel (𝑉𝑂𝐸) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
86, 7sylan 579 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
9 id 22 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
108, 9syldan 590 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1110ex 412 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
122, 5, 113syl 18 . . 3 (⟨𝐹, 𝑃⟩ ∈ (𝑉𝑂𝐸) → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
131, 12sylbi 216 . 2 (𝐹(𝑉𝑂𝐸)𝑃 → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
1413pm2.43i 52 1 (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2932  Vcvv 3466  c0 4315  cop 4627   class class class wbr 5139  Rel wrel 5672  (class class class)co 7402  cmpo 7404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-xp 5673  df-rel 5674  df-dm 5677  df-iota 6486  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407
This theorem is referenced by:  brovmpoex  8204
  Copyright terms: Public domain W3C validator