| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brovmpoex | Structured version Visualization version GIF version | ||
| Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.) |
| Ref | Expression |
|---|---|
| brovmpoex.1 | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) |
| Ref | Expression |
|---|---|
| brovmpoex | ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brovmpoex.1 | . 2 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) | |
| 2 | 1 | relmpoopab 8102 | . . 3 ⊢ Rel (𝑉𝑂𝐸) |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸)) |
| 4 | 1, 3 | brovex 8230 | 1 ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 class class class wbr 5125 {copab 5187 Rel wrel 5672 (class class class)co 7414 ∈ cmpo 7416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |