Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brovmpoex | Structured version Visualization version GIF version |
Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.) |
Ref | Expression |
---|---|
brovmpoex.1 | ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) |
Ref | Expression |
---|---|
brovmpoex | ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brovmpoex.1 | . 2 ⊢ 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑧, 𝑤〉 ∣ 𝜑}) | |
2 | 1 | relmpoopab 8002 | . . 3 ⊢ Rel (𝑉𝑂𝐸) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸)) |
4 | 1, 3 | brovex 8108 | 1 ⊢ (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 class class class wbr 5092 {copab 5154 Rel wrel 5625 (class class class)co 7337 ∈ cmpo 7339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |