MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopoveqd Structured version   Visualization version   GIF version

Theorem mpoxopoveqd 8254
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
Hypotheses
Ref Expression
mpoxopoveq.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
mpoxopoveqd.1 (𝜓 → (𝑉𝑋𝑊𝑌))
mpoxopoveqd.2 ((𝜓 ∧ ¬ 𝐾𝑉) → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅)
Assertion
Ref Expression
mpoxopoveqd (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑛,𝑊,𝑥,𝑦   𝑛,𝑋,𝑥,𝑦   𝑛,𝑌,𝑥,𝑦   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝜓(𝑥,𝑦,𝑛)   𝐹(𝑦,𝑛)

Proof of Theorem mpoxopoveqd
StepHypRef Expression
1 mpoxopoveq.f . . . . 5 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
21mpoxopoveq 8252 . . . 4 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
32ex 412 . . 3 ((𝑉𝑋𝑊𝑌) → (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
4 mpoxopoveqd.1 . . 3 (𝜓 → (𝑉𝑋𝑊𝑌))
53, 4syl11 33 . 2 (𝐾𝑉 → (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
6 df-nel 3047 . . . . . 6 (𝐾𝑉 ↔ ¬ 𝐾𝑉)
71mpoxopynvov0 8251 . . . . . 6 (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
86, 7sylbir 235 . . . . 5 𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
98adantr 480 . . . 4 ((¬ 𝐾𝑉𝜓) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
10 mpoxopoveqd.2 . . . . . 6 ((𝜓 ∧ ¬ 𝐾𝑉) → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅)
1110eqcomd 2743 . . . . 5 ((𝜓 ∧ ¬ 𝐾𝑉) → ∅ = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
1211ancoms 458 . . . 4 ((¬ 𝐾𝑉𝜓) → ∅ = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
139, 12eqtrd 2777 . . 3 ((¬ 𝐾𝑉𝜓) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
1413ex 412 . 2 𝐾𝑉 → (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
155, 14pm2.61i 182 1 (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wnel 3046  {crab 3436  Vcvv 3481  [wsbc 3794  c0 4342  cop 4640  cfv 6569  (class class class)co 7438  cmpo 7440  1st c1st 8020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator