| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpoxopoveqd | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
| Ref | Expression |
|---|---|
| mpoxopoveq.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) |
| mpoxopoveqd.1 | ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) |
| mpoxopoveqd.2 | ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} = ∅) |
| Ref | Expression |
|---|---|
| mpoxopoveqd | ⊢ (𝜓 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoxopoveq.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) | |
| 2 | 1 | mpoxopoveq 8175 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
| 3 | 2 | ex 412 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐾 ∈ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑})) |
| 4 | mpoxopoveqd.1 | . . 3 ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) | |
| 5 | 3, 4 | syl11 33 | . 2 ⊢ (𝐾 ∈ 𝑉 → (𝜓 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑})) |
| 6 | df-nel 3030 | . . . . . 6 ⊢ (𝐾 ∉ 𝑉 ↔ ¬ 𝐾 ∈ 𝑉) | |
| 7 | 1 | mpoxopynvov0 8174 | . . . . . 6 ⊢ (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
| 8 | 6, 7 | sylbir 235 | . . . . 5 ⊢ (¬ 𝐾 ∈ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
| 10 | mpoxopoveqd.2 | . . . . . 6 ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} = ∅) | |
| 11 | 10 | eqcomd 2735 | . . . . 5 ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → ∅ = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
| 12 | 11 | ancoms 458 | . . . 4 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → ∅ = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
| 13 | 9, 12 | eqtrd 2764 | . . 3 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
| 14 | 13 | ex 412 | . 2 ⊢ (¬ 𝐾 ∈ 𝑉 → (𝜓 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑})) |
| 15 | 5, 14 | pm2.61i 182 | 1 ⊢ (𝜓 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 {crab 3402 Vcvv 3444 [wsbc 3750 ∅c0 4292 〈cop 4591 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |