MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopoveqd Structured version   Visualization version   GIF version

Theorem mpoxopoveqd 7917
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017.)
Hypotheses
Ref Expression
mpoxopoveq.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
mpoxopoveqd.1 (𝜓 → (𝑉𝑋𝑊𝑌))
mpoxopoveqd.2 ((𝜓 ∧ ¬ 𝐾𝑉) → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅)
Assertion
Ref Expression
mpoxopoveqd (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
Distinct variable groups:   𝑛,𝐾,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑛,𝑊,𝑥,𝑦   𝑛,𝑋,𝑥,𝑦   𝑛,𝑌,𝑥,𝑦   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝜓(𝑥,𝑦,𝑛)   𝐹(𝑦,𝑛)

Proof of Theorem mpoxopoveqd
StepHypRef Expression
1 mpoxopoveq.f . . . . 5 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ {𝑛 ∈ (1st𝑥) ∣ 𝜑})
21mpoxopoveq 7915 . . . 4 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
32ex 416 . . 3 ((𝑉𝑋𝑊𝑌) → (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
4 mpoxopoveqd.1 . . 3 (𝜓 → (𝑉𝑋𝑊𝑌))
53, 4syl11 33 . 2 (𝐾𝑉 → (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
6 df-nel 3039 . . . . . 6 (𝐾𝑉 ↔ ¬ 𝐾𝑉)
71mpoxopynvov0 7914 . . . . . 6 (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
86, 7sylbir 238 . . . . 5 𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
98adantr 484 . . . 4 ((¬ 𝐾𝑉𝜓) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
10 mpoxopoveqd.2 . . . . . 6 ((𝜓 ∧ ¬ 𝐾𝑉) → {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅)
1110eqcomd 2744 . . . . 5 ((𝜓 ∧ ¬ 𝐾𝑉) → ∅ = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
1211ancoms 462 . . . 4 ((¬ 𝐾𝑉𝜓) → ∅ = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
139, 12eqtrd 2773 . . 3 ((¬ 𝐾𝑉𝜓) → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
1413ex 416 . 2 𝐾𝑉 → (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}))
155, 14pm2.61i 185 1 (𝜓 → (⟨𝑉, 𝑊𝐹𝐾) = {𝑛𝑉[𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2113  wnel 3038  {crab 3057  Vcvv 3398  [wsbc 3682  c0 4212  cop 4523  cfv 6340  (class class class)co 7171  cmpo 7173  1st c1st 7713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pr 5297  ax-un 7480
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fv 6348  df-ov 7174  df-oprab 7175  df-mpo 7176  df-1st 7715  df-2nd 7716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator