![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoxopoveqd | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopoveq.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) |
mpoxopoveqd.1 | ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) |
mpoxopoveqd.2 | ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅) |
Ref | Expression |
---|---|
mpoxopoveqd | ⊢ (𝜓 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopoveq.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) | |
2 | 1 | mpoxopoveq 8203 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
3 | 2 | ex 413 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐾 ∈ 𝑉 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})) |
4 | mpoxopoveqd.1 | . . 3 ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) | |
5 | 3, 4 | syl11 33 | . 2 ⊢ (𝐾 ∈ 𝑉 → (𝜓 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})) |
6 | df-nel 3047 | . . . . . 6 ⊢ (𝐾 ∉ 𝑉 ↔ ¬ 𝐾 ∈ 𝑉) | |
7 | 1 | mpoxopynvov0 8202 | . . . . . 6 ⊢ (𝐾 ∉ 𝑉 → (⟨𝑉, 𝑊⟩𝐹𝐾) = ∅) |
8 | 6, 7 | sylbir 234 | . . . . 5 ⊢ (¬ 𝐾 ∈ 𝑉 → (⟨𝑉, 𝑊⟩𝐹𝐾) = ∅) |
9 | 8 | adantr 481 | . . . 4 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → (⟨𝑉, 𝑊⟩𝐹𝐾) = ∅) |
10 | mpoxopoveqd.2 | . . . . . 6 ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅) | |
11 | 10 | eqcomd 2738 | . . . . 5 ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → ∅ = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
12 | 11 | ancoms 459 | . . . 4 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → ∅ = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
13 | 9, 12 | eqtrd 2772 | . . 3 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
14 | 13 | ex 413 | . 2 ⊢ (¬ 𝐾 ∈ 𝑉 → (𝜓 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})) |
15 | 5, 14 | pm2.61i 182 | 1 ⊢ (𝜓 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∉ wnel 3046 {crab 3432 Vcvv 3474 [wsbc 3777 ∅c0 4322 ⟨cop 4634 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 1st c1st 7972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |