Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoxopoveqd | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopoveq.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) |
mpoxopoveqd.1 | ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) |
mpoxopoveqd.2 | ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} = ∅) |
Ref | Expression |
---|---|
mpoxopoveqd | ⊢ (𝜓 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopoveq.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) | |
2 | 1 | mpoxopoveq 8006 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
3 | 2 | ex 412 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐾 ∈ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑})) |
4 | mpoxopoveqd.1 | . . 3 ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) | |
5 | 3, 4 | syl11 33 | . 2 ⊢ (𝐾 ∈ 𝑉 → (𝜓 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑})) |
6 | df-nel 3049 | . . . . . 6 ⊢ (𝐾 ∉ 𝑉 ↔ ¬ 𝐾 ∈ 𝑉) | |
7 | 1 | mpoxopynvov0 8005 | . . . . . 6 ⊢ (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
8 | 6, 7 | sylbir 234 | . . . . 5 ⊢ (¬ 𝐾 ∈ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
10 | mpoxopoveqd.2 | . . . . . 6 ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑} = ∅) | |
11 | 10 | eqcomd 2744 | . . . . 5 ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → ∅ = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
12 | 11 | ancoms 458 | . . . 4 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → ∅ = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
13 | 9, 12 | eqtrd 2778 | . . 3 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
14 | 13 | ex 412 | . 2 ⊢ (¬ 𝐾 ∈ 𝑉 → (𝜓 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑})) |
15 | 5, 14 | pm2.61i 182 | 1 ⊢ (𝜓 → (〈𝑉, 𝑊〉𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [〈𝑉, 𝑊〉 / 𝑥][𝐾 / 𝑦]𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 {crab 3067 Vcvv 3422 [wsbc 3711 ∅c0 4253 〈cop 4564 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |