![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoxopoveqd | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopoveq.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) |
mpoxopoveqd.1 | ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) |
mpoxopoveqd.2 | ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅) |
Ref | Expression |
---|---|
mpoxopoveqd | ⊢ (𝜓 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopoveq.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) | |
2 | 1 | mpoxopoveq 8154 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
3 | 2 | ex 414 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐾 ∈ 𝑉 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})) |
4 | mpoxopoveqd.1 | . . 3 ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) | |
5 | 3, 4 | syl11 33 | . 2 ⊢ (𝐾 ∈ 𝑉 → (𝜓 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})) |
6 | df-nel 3047 | . . . . . 6 ⊢ (𝐾 ∉ 𝑉 ↔ ¬ 𝐾 ∈ 𝑉) | |
7 | 1 | mpoxopynvov0 8153 | . . . . . 6 ⊢ (𝐾 ∉ 𝑉 → (⟨𝑉, 𝑊⟩𝐹𝐾) = ∅) |
8 | 6, 7 | sylbir 234 | . . . . 5 ⊢ (¬ 𝐾 ∈ 𝑉 → (⟨𝑉, 𝑊⟩𝐹𝐾) = ∅) |
9 | 8 | adantr 482 | . . . 4 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → (⟨𝑉, 𝑊⟩𝐹𝐾) = ∅) |
10 | mpoxopoveqd.2 | . . . . . 6 ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅) | |
11 | 10 | eqcomd 2739 | . . . . 5 ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → ∅ = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
12 | 11 | ancoms 460 | . . . 4 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → ∅ = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
13 | 9, 12 | eqtrd 2773 | . . 3 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
14 | 13 | ex 414 | . 2 ⊢ (¬ 𝐾 ∈ 𝑉 → (𝜓 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})) |
15 | 5, 14 | pm2.61i 182 | 1 ⊢ (𝜓 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∉ wnel 3046 {crab 3406 Vcvv 3447 [wsbc 3743 ∅c0 4286 ⟨cop 4596 ‘cfv 6500 (class class class)co 7361 ∈ cmpo 7363 1st c1st 7923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-1st 7925 df-2nd 7926 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |