![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoxopoveqd | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopoveq.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) |
mpoxopoveqd.1 | ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) |
mpoxopoveqd.2 | ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅) |
Ref | Expression |
---|---|
mpoxopoveqd | ⊢ (𝜓 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopoveq.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ {𝑛 ∈ (1st ‘𝑥) ∣ 𝜑}) | |
2 | 1 | mpoxopoveq 8221 | . . . 4 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∈ 𝑉) → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
3 | 2 | ex 411 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐾 ∈ 𝑉 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})) |
4 | mpoxopoveqd.1 | . . 3 ⊢ (𝜓 → (𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌)) | |
5 | 3, 4 | syl11 33 | . 2 ⊢ (𝐾 ∈ 𝑉 → (𝜓 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})) |
6 | df-nel 3037 | . . . . . 6 ⊢ (𝐾 ∉ 𝑉 ↔ ¬ 𝐾 ∈ 𝑉) | |
7 | 1 | mpoxopynvov0 8220 | . . . . . 6 ⊢ (𝐾 ∉ 𝑉 → (⟨𝑉, 𝑊⟩𝐹𝐾) = ∅) |
8 | 6, 7 | sylbir 234 | . . . . 5 ⊢ (¬ 𝐾 ∈ 𝑉 → (⟨𝑉, 𝑊⟩𝐹𝐾) = ∅) |
9 | 8 | adantr 479 | . . . 4 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → (⟨𝑉, 𝑊⟩𝐹𝐾) = ∅) |
10 | mpoxopoveqd.2 | . . . . . 6 ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑} = ∅) | |
11 | 10 | eqcomd 2731 | . . . . 5 ⊢ ((𝜓 ∧ ¬ 𝐾 ∈ 𝑉) → ∅ = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
12 | 11 | ancoms 457 | . . . 4 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → ∅ = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
13 | 9, 12 | eqtrd 2765 | . . 3 ⊢ ((¬ 𝐾 ∈ 𝑉 ∧ 𝜓) → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
14 | 13 | ex 411 | . 2 ⊢ (¬ 𝐾 ∈ 𝑉 → (𝜓 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑})) |
15 | 5, 14 | pm2.61i 182 | 1 ⊢ (𝜓 → (⟨𝑉, 𝑊⟩𝐹𝐾) = {𝑛 ∈ 𝑉 ∣ [⟨𝑉, 𝑊⟩ / 𝑥][𝐾 / 𝑦]𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∉ wnel 3036 {crab 3419 Vcvv 3463 [wsbc 3769 ∅c0 4318 ⟨cop 4630 ‘cfv 6542 (class class class)co 7415 ∈ cmpo 7417 1st c1st 7987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7989 df-2nd 7990 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |