Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2 Structured version   Visualization version   GIF version

Theorem cvmlift2 35305
Description: A two-dimensional version of cvmlift 35288. There is a unique lift of functions on the unit square II ×t II which commutes with the covering map. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
Assertion
Ref Expression
cvmlift2 (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃))
Distinct variable groups:   𝑓,𝐹   𝜑,𝑓   𝑓,𝐽   𝑓,𝐺   𝐶,𝑓   𝑃,𝑓
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cvmlift2
Dummy variables 𝑔 𝑘 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . 2 𝐵 = 𝐶
2 cvmlift2.f . 2 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . 2 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . 2 (𝜑𝑃𝐵)
5 cvmlift2.i . 2 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 coeq2 5830 . . . . 5 ( = 𝑔 → (𝐹) = (𝐹𝑔))
7 oveq1 7401 . . . . . . 7 (𝑤 = 𝑧 → (𝑤𝐺0) = (𝑧𝐺0))
87cbvmptv 5219 . . . . . 6 (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))
98a1i 11 . . . . 5 ( = 𝑔 → (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)))
106, 9eqeq12d 2746 . . . 4 ( = 𝑔 → ((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))))
11 fveq1 6864 . . . . 5 ( = 𝑔 → (‘0) = (𝑔‘0))
1211eqeq1d 2732 . . . 4 ( = 𝑔 → ((‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃))
1310, 12anbi12d 632 . . 3 ( = 𝑔 → (((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑔‘0) = 𝑃)))
1413cbvriotavw 7361 . 2 ( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑔‘0) = 𝑃))
15 coeq2 5830 . . . . . . . 8 (𝑘 = 𝑔 → (𝐹𝑘) = (𝐹𝑔))
16 oveq2 7402 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑢𝐺𝑤) = (𝑢𝐺𝑧))
1716cbvmptv 5219 . . . . . . . . 9 (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧))
1817a1i 11 . . . . . . . 8 (𝑘 = 𝑔 → (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)))
1915, 18eqeq12d 2746 . . . . . . 7 (𝑘 = 𝑔 → ((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧))))
20 fveq1 6864 . . . . . . . 8 (𝑘 = 𝑔 → (𝑘‘0) = (𝑔‘0))
2120eqeq1d 2732 . . . . . . 7 (𝑘 = 𝑔 → ((𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) ↔ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))
2219, 21anbi12d 632 . . . . . 6 (𝑘 = 𝑔 → (((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))))
2322cbvriotavw 7361 . . . . 5 (𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))
24 oveq1 7401 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢𝐺𝑧) = (𝑥𝐺𝑧))
2524mpteq2dv 5209 . . . . . . . 8 (𝑢 = 𝑥 → (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)))
2625eqeq2d 2741 . . . . . . 7 (𝑢 = 𝑥 → ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧))))
27 fveq2 6865 . . . . . . . 8 (𝑢 = 𝑥 → (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))
2827eqeq2d 2741 . . . . . . 7 (𝑢 = 𝑥 → ((𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) ↔ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))
2926, 28anbi12d 632 . . . . . 6 (𝑢 = 𝑥 → (((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3029riotabidv 7353 . . . . 5 (𝑢 = 𝑥 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3123, 30eqtrid 2777 . . . 4 (𝑢 = 𝑥 → (𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3231fveq1d 6867 . . 3 (𝑢 = 𝑥 → ((𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))‘𝑣) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑣))
33 fveq2 6865 . . 3 (𝑣 = 𝑦 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑣) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑦))
3432, 33cbvmpov 7491 . 2 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ ((𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))‘𝑣)) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑦))
351, 2, 3, 4, 5, 14, 34cvmlift2lem13 35304 1 (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3355   cuni 4879  cmpt 5196  ccom 5650  cfv 6519  crio 7350  (class class class)co 7394  cmpo 7396  0cc0 11086  1c1 11087  [,]cicc 13322   Cn ccn 23117   ×t ctx 23453  IIcii 24774   CovMap ccvm 35244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-inf2 9612  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164  ax-addf 11165
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-om 7851  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-er 8682  df-ec 8684  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9331  df-fi 9380  df-sup 9411  df-inf 9412  df-oi 9481  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-q 12922  df-rp 12966  df-xneg 13085  df-xadd 13086  df-xmul 13087  df-ioo 13323  df-ico 13325  df-icc 13326  df-fz 13482  df-fzo 13629  df-fl 13766  df-seq 13977  df-exp 14037  df-hash 14306  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-clim 15461  df-sum 15660  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-xrs 17471  df-qtop 17476  df-imas 17477  df-xps 17479  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-mulg 19006  df-cntz 19255  df-cmn 19718  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-cnfld 21271  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-cn 23120  df-cnp 23121  df-cmp 23280  df-conn 23305  df-lly 23359  df-nlly 23360  df-tx 23455  df-hmeo 23648  df-xms 24214  df-ms 24215  df-tms 24216  df-ii 24776  df-cncf 24777  df-htpy 24875  df-phtpy 24876  df-phtpc 24897  df-pconn 35210  df-sconn 35211  df-cvm 35245
This theorem is referenced by:  cvmliftpht  35307
  Copyright terms: Public domain W3C validator