Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2 Structured version   Visualization version   GIF version

Theorem cvmlift2 34307
Description: A two-dimensional version of cvmlift 34290. There is a unique lift of functions on the unit square II ×t II which commutes with the covering map. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
Assertion
Ref Expression
cvmlift2 (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃))
Distinct variable groups:   𝑓,𝐹   𝜑,𝑓   𝑓,𝐽   𝑓,𝐺   𝐶,𝑓   𝑃,𝑓
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cvmlift2
Dummy variables 𝑔 𝑘 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . 2 𝐵 = 𝐶
2 cvmlift2.f . 2 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . 2 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . 2 (𝜑𝑃𝐵)
5 cvmlift2.i . 2 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 coeq2 5859 . . . . 5 ( = 𝑔 → (𝐹) = (𝐹𝑔))
7 oveq1 7416 . . . . . . 7 (𝑤 = 𝑧 → (𝑤𝐺0) = (𝑧𝐺0))
87cbvmptv 5262 . . . . . 6 (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))
98a1i 11 . . . . 5 ( = 𝑔 → (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)))
106, 9eqeq12d 2749 . . . 4 ( = 𝑔 → ((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))))
11 fveq1 6891 . . . . 5 ( = 𝑔 → (‘0) = (𝑔‘0))
1211eqeq1d 2735 . . . 4 ( = 𝑔 → ((‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃))
1310, 12anbi12d 632 . . 3 ( = 𝑔 → (((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑔‘0) = 𝑃)))
1413cbvriotavw 7375 . 2 ( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑔‘0) = 𝑃))
15 coeq2 5859 . . . . . . . 8 (𝑘 = 𝑔 → (𝐹𝑘) = (𝐹𝑔))
16 oveq2 7417 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑢𝐺𝑤) = (𝑢𝐺𝑧))
1716cbvmptv 5262 . . . . . . . . 9 (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧))
1817a1i 11 . . . . . . . 8 (𝑘 = 𝑔 → (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)))
1915, 18eqeq12d 2749 . . . . . . 7 (𝑘 = 𝑔 → ((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧))))
20 fveq1 6891 . . . . . . . 8 (𝑘 = 𝑔 → (𝑘‘0) = (𝑔‘0))
2120eqeq1d 2735 . . . . . . 7 (𝑘 = 𝑔 → ((𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) ↔ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))
2219, 21anbi12d 632 . . . . . 6 (𝑘 = 𝑔 → (((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))))
2322cbvriotavw 7375 . . . . 5 (𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))
24 oveq1 7416 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢𝐺𝑧) = (𝑥𝐺𝑧))
2524mpteq2dv 5251 . . . . . . . 8 (𝑢 = 𝑥 → (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)))
2625eqeq2d 2744 . . . . . . 7 (𝑢 = 𝑥 → ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧))))
27 fveq2 6892 . . . . . . . 8 (𝑢 = 𝑥 → (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))
2827eqeq2d 2744 . . . . . . 7 (𝑢 = 𝑥 → ((𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) ↔ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))
2926, 28anbi12d 632 . . . . . 6 (𝑢 = 𝑥 → (((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3029riotabidv 7367 . . . . 5 (𝑢 = 𝑥 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3123, 30eqtrid 2785 . . . 4 (𝑢 = 𝑥 → (𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3231fveq1d 6894 . . 3 (𝑢 = 𝑥 → ((𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))‘𝑣) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑣))
33 fveq2 6892 . . 3 (𝑣 = 𝑦 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑣) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑦))
3432, 33cbvmpov 7504 . 2 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ ((𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))‘𝑣)) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑦))
351, 2, 3, 4, 5, 14, 34cvmlift2lem13 34306 1 (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  ∃!wreu 3375   cuni 4909  cmpt 5232  ccom 5681  cfv 6544  crio 7364  (class class class)co 7409  cmpo 7411  0cc0 11110  1c1 11111  [,]cicc 13327   Cn ccn 22728   ×t ctx 23064  IIcii 24391   CovMap ccvm 34246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-ec 8705  df-map 8822  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-mulg 18951  df-cntz 19181  df-cmn 19650  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-cn 22731  df-cnp 22732  df-cmp 22891  df-conn 22916  df-lly 22970  df-nlly 22971  df-tx 23066  df-hmeo 23259  df-xms 23826  df-ms 23827  df-tms 23828  df-ii 24393  df-htpy 24486  df-phtpy 24487  df-phtpc 24508  df-pconn 34212  df-sconn 34213  df-cvm 34247
This theorem is referenced by:  cvmliftpht  34309
  Copyright terms: Public domain W3C validator