Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2 Structured version   Visualization version   GIF version

Theorem cvmlift2 35328
Description: A two-dimensional version of cvmlift 35311. There is a unique lift of functions on the unit square II ×t II which commutes with the covering map. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
Assertion
Ref Expression
cvmlift2 (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃))
Distinct variable groups:   𝑓,𝐹   𝜑,𝑓   𝑓,𝐽   𝑓,𝐺   𝐶,𝑓   𝑃,𝑓
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cvmlift2
Dummy variables 𝑔 𝑘 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . 2 𝐵 = 𝐶
2 cvmlift2.f . 2 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . 2 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . 2 (𝜑𝑃𝐵)
5 cvmlift2.i . 2 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 coeq2 5796 . . . . 5 ( = 𝑔 → (𝐹) = (𝐹𝑔))
7 oveq1 7348 . . . . . . 7 (𝑤 = 𝑧 → (𝑤𝐺0) = (𝑧𝐺0))
87cbvmptv 5193 . . . . . 6 (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))
98a1i 11 . . . . 5 ( = 𝑔 → (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)))
106, 9eqeq12d 2746 . . . 4 ( = 𝑔 → ((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))))
11 fveq1 6816 . . . . 5 ( = 𝑔 → (‘0) = (𝑔‘0))
1211eqeq1d 2732 . . . 4 ( = 𝑔 → ((‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃))
1310, 12anbi12d 632 . . 3 ( = 𝑔 → (((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑔‘0) = 𝑃)))
1413cbvriotavw 7308 . 2 ( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑔‘0) = 𝑃))
15 coeq2 5796 . . . . . . . 8 (𝑘 = 𝑔 → (𝐹𝑘) = (𝐹𝑔))
16 oveq2 7349 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑢𝐺𝑤) = (𝑢𝐺𝑧))
1716cbvmptv 5193 . . . . . . . . 9 (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧))
1817a1i 11 . . . . . . . 8 (𝑘 = 𝑔 → (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)))
1915, 18eqeq12d 2746 . . . . . . 7 (𝑘 = 𝑔 → ((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧))))
20 fveq1 6816 . . . . . . . 8 (𝑘 = 𝑔 → (𝑘‘0) = (𝑔‘0))
2120eqeq1d 2732 . . . . . . 7 (𝑘 = 𝑔 → ((𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) ↔ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))
2219, 21anbi12d 632 . . . . . 6 (𝑘 = 𝑔 → (((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))))
2322cbvriotavw 7308 . . . . 5 (𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))
24 oveq1 7348 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢𝐺𝑧) = (𝑥𝐺𝑧))
2524mpteq2dv 5183 . . . . . . . 8 (𝑢 = 𝑥 → (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)))
2625eqeq2d 2741 . . . . . . 7 (𝑢 = 𝑥 → ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧))))
27 fveq2 6817 . . . . . . . 8 (𝑢 = 𝑥 → (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))
2827eqeq2d 2741 . . . . . . 7 (𝑢 = 𝑥 → ((𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) ↔ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))
2926, 28anbi12d 632 . . . . . 6 (𝑢 = 𝑥 → (((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3029riotabidv 7300 . . . . 5 (𝑢 = 𝑥 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3123, 30eqtrid 2777 . . . 4 (𝑢 = 𝑥 → (𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3231fveq1d 6819 . . 3 (𝑢 = 𝑥 → ((𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))‘𝑣) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑣))
33 fveq2 6817 . . 3 (𝑣 = 𝑦 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑣) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑦))
3432, 33cbvmpov 7436 . 2 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ ((𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))‘𝑣)) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑦))
351, 2, 3, 4, 5, 14, 34cvmlift2lem13 35327 1 (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  ∃!wreu 3342   cuni 4857  cmpt 5170  ccom 5618  cfv 6477  crio 7297  (class class class)co 7341  cmpo 7343  0cc0 10998  1c1 10999  [,]cicc 13240   Cn ccn 23132   ×t ctx 23468  IIcii 24788   CovMap ccvm 35267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-ec 8619  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-cn 23135  df-cnp 23136  df-cmp 23295  df-conn 23320  df-lly 23374  df-nlly 23375  df-tx 23470  df-hmeo 23663  df-xms 24228  df-ms 24229  df-tms 24230  df-ii 24790  df-cncf 24791  df-htpy 24889  df-phtpy 24890  df-phtpc 24911  df-pconn 35233  df-sconn 35234  df-cvm 35268
This theorem is referenced by:  cvmliftpht  35330
  Copyright terms: Public domain W3C validator