| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cvmlift2.b | . 2
⊢ 𝐵 = ∪
𝐶 | 
| 2 |  | cvmlift2.f | . 2
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| 3 |  | cvmlift2.g | . 2
⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn
𝐽)) | 
| 4 |  | cvmlift2.p | . 2
⊢ (𝜑 → 𝑃 ∈ 𝐵) | 
| 5 |  | cvmlift2.i | . 2
⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) | 
| 6 |  | coeq2 5869 | . . . . 5
⊢ (ℎ = 𝑔 → (𝐹 ∘ ℎ) = (𝐹 ∘ 𝑔)) | 
| 7 |  | oveq1 7438 | . . . . . . 7
⊢ (𝑤 = 𝑧 → (𝑤𝐺0) = (𝑧𝐺0)) | 
| 8 | 7 | cbvmptv 5255 | . . . . . 6
⊢ (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) | 
| 9 | 8 | a1i 11 | . . . . 5
⊢ (ℎ = 𝑔 → (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))) | 
| 10 | 6, 9 | eqeq12d 2753 | . . . 4
⊢ (ℎ = 𝑔 → ((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ↔ (𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)))) | 
| 11 |  | fveq1 6905 | . . . . 5
⊢ (ℎ = 𝑔 → (ℎ‘0) = (𝑔‘0)) | 
| 12 | 11 | eqeq1d 2739 | . . . 4
⊢ (ℎ = 𝑔 → ((ℎ‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃)) | 
| 13 | 10, 12 | anbi12d 632 | . . 3
⊢ (ℎ = 𝑔 → (((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑔‘0) = 𝑃))) | 
| 14 | 13 | cbvriotavw 7398 | . 2
⊢
(℩ℎ
∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑔‘0) = 𝑃)) | 
| 15 |  | coeq2 5869 | . . . . . . . 8
⊢ (𝑘 = 𝑔 → (𝐹 ∘ 𝑘) = (𝐹 ∘ 𝑔)) | 
| 16 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑤 = 𝑧 → (𝑢𝐺𝑤) = (𝑢𝐺𝑧)) | 
| 17 | 16 | cbvmptv 5255 | . . . . . . . . 9
⊢ (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) | 
| 18 | 17 | a1i 11 | . . . . . . . 8
⊢ (𝑘 = 𝑔 → (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧))) | 
| 19 | 15, 18 | eqeq12d 2753 | . . . . . . 7
⊢ (𝑘 = 𝑔 → ((𝐹 ∘ 𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ↔ (𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)))) | 
| 20 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑘 = 𝑔 → (𝑘‘0) = (𝑔‘0)) | 
| 21 | 20 | eqeq1d 2739 | . . . . . . 7
⊢ (𝑘 = 𝑔 → ((𝑘‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑢) ↔ (𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑢))) | 
| 22 | 19, 21 | anbi12d 632 | . . . . . 6
⊢ (𝑘 = 𝑔 → (((𝐹 ∘ 𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑢)) ↔ ((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑢)))) | 
| 23 | 22 | cbvriotavw 7398 | . . . . 5
⊢
(℩𝑘
∈ (II Cn 𝐶)((𝐹 ∘ 𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑢))) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑢))) | 
| 24 |  | oveq1 7438 | . . . . . . . . 9
⊢ (𝑢 = 𝑥 → (𝑢𝐺𝑧) = (𝑥𝐺𝑧)) | 
| 25 | 24 | mpteq2dv 5244 | . . . . . . . 8
⊢ (𝑢 = 𝑥 → (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧))) | 
| 26 | 25 | eqeq2d 2748 | . . . . . . 7
⊢ (𝑢 = 𝑥 → ((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ↔ (𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)))) | 
| 27 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝑢 = 𝑥 → ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑢) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑥)) | 
| 28 | 27 | eqeq2d 2748 | . . . . . . 7
⊢ (𝑢 = 𝑥 → ((𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑢) ↔ (𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑥))) | 
| 29 | 26, 28 | anbi12d 632 | . . . . . 6
⊢ (𝑢 = 𝑥 → (((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑢)) ↔ ((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑥)))) | 
| 30 | 29 | riotabidv 7390 | . . . . 5
⊢ (𝑢 = 𝑥 → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑢))) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑥)))) | 
| 31 | 23, 30 | eqtrid 2789 | . . . 4
⊢ (𝑢 = 𝑥 → (℩𝑘 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑢))) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑥)))) | 
| 32 | 31 | fveq1d 6908 | . . 3
⊢ (𝑢 = 𝑥 → ((℩𝑘 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑢)))‘𝑣) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑥)))‘𝑣)) | 
| 33 |  | fveq2 6906 | . . 3
⊢ (𝑣 = 𝑦 → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑥)))‘𝑣) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑥)))‘𝑦)) | 
| 34 | 32, 33 | cbvmpov 7528 | . 2
⊢ (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦
((℩𝑘 ∈
(II Cn 𝐶)((𝐹 ∘ 𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑢)))‘𝑣)) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = ((℩ℎ ∈ (II Cn 𝐶)((𝐹 ∘ ℎ) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (ℎ‘0) = 𝑃))‘𝑥)))‘𝑦)) | 
| 35 | 1, 2, 3, 4, 5, 14,
34 | cvmlift2lem13 35320 | 1
⊢ (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃)) |