Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2 Structured version   Visualization version   GIF version

Theorem cvmlift2 35371
Description: A two-dimensional version of cvmlift 35354. There is a unique lift of functions on the unit square II ×t II which commutes with the covering map. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
Assertion
Ref Expression
cvmlift2 (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃))
Distinct variable groups:   𝑓,𝐹   𝜑,𝑓   𝑓,𝐽   𝑓,𝐺   𝐶,𝑓   𝑃,𝑓
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cvmlift2
Dummy variables 𝑔 𝑘 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . 2 𝐵 = 𝐶
2 cvmlift2.f . 2 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . 2 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . 2 (𝜑𝑃𝐵)
5 cvmlift2.i . 2 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 coeq2 5805 . . . . 5 ( = 𝑔 → (𝐹) = (𝐹𝑔))
7 oveq1 7362 . . . . . . 7 (𝑤 = 𝑧 → (𝑤𝐺0) = (𝑧𝐺0))
87cbvmptv 5199 . . . . . 6 (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))
98a1i 11 . . . . 5 ( = 𝑔 → (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)))
106, 9eqeq12d 2749 . . . 4 ( = 𝑔 → ((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))))
11 fveq1 6830 . . . . 5 ( = 𝑔 → (‘0) = (𝑔‘0))
1211eqeq1d 2735 . . . 4 ( = 𝑔 → ((‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃))
1310, 12anbi12d 632 . . 3 ( = 𝑔 → (((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑔‘0) = 𝑃)))
1413cbvriotavw 7322 . 2 ( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑔‘0) = 𝑃))
15 coeq2 5805 . . . . . . . 8 (𝑘 = 𝑔 → (𝐹𝑘) = (𝐹𝑔))
16 oveq2 7363 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑢𝐺𝑤) = (𝑢𝐺𝑧))
1716cbvmptv 5199 . . . . . . . . 9 (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧))
1817a1i 11 . . . . . . . 8 (𝑘 = 𝑔 → (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)))
1915, 18eqeq12d 2749 . . . . . . 7 (𝑘 = 𝑔 → ((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧))))
20 fveq1 6830 . . . . . . . 8 (𝑘 = 𝑔 → (𝑘‘0) = (𝑔‘0))
2120eqeq1d 2735 . . . . . . 7 (𝑘 = 𝑔 → ((𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) ↔ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))
2219, 21anbi12d 632 . . . . . 6 (𝑘 = 𝑔 → (((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))))
2322cbvriotavw 7322 . . . . 5 (𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))
24 oveq1 7362 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑢𝐺𝑧) = (𝑥𝐺𝑧))
2524mpteq2dv 5189 . . . . . . . 8 (𝑢 = 𝑥 → (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)))
2625eqeq2d 2744 . . . . . . 7 (𝑢 = 𝑥 → ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ↔ (𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧))))
27 fveq2 6831 . . . . . . . 8 (𝑢 = 𝑥 → (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))
2827eqeq2d 2744 . . . . . . 7 (𝑢 = 𝑥 → ((𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢) ↔ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))
2926, 28anbi12d 632 . . . . . 6 (𝑢 = 𝑥 → (((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)) ↔ ((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3029riotabidv 7314 . . . . 5 (𝑢 = 𝑥 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑢𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3123, 30eqtrid 2780 . . . 4 (𝑢 = 𝑥 → (𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢))) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥))))
3231fveq1d 6833 . . 3 (𝑢 = 𝑥 → ((𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))‘𝑣) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑣))
33 fveq2 6831 . . 3 (𝑣 = 𝑦 → ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑣) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑦))
3432, 33cbvmpov 7450 . 2 (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ ((𝑘 ∈ (II Cn 𝐶)((𝐹𝑘) = (𝑤 ∈ (0[,]1) ↦ (𝑢𝐺𝑤)) ∧ (𝑘‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑢)))‘𝑣)) = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑔‘0) = (( ∈ (II Cn 𝐶)((𝐹) = (𝑤 ∈ (0[,]1) ↦ (𝑤𝐺0)) ∧ (‘0) = 𝑃))‘𝑥)))‘𝑦))
351, 2, 3, 4, 5, 14, 34cvmlift2lem13 35370 1 (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  ∃!wreu 3346   cuni 4860  cmpt 5176  ccom 5625  cfv 6489  crio 7311  (class class class)co 7355  cmpo 7357  0cc0 11016  1c1 11017  [,]cicc 13258   Cn ccn 23149   ×t ctx 23485  IIcii 24805   CovMap ccvm 35310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-ec 8633  df-map 8761  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-seq 13919  df-exp 13979  df-hash 14248  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-clim 15405  df-sum 15604  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-mulg 18991  df-cntz 19239  df-cmn 19704  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-cnfld 21302  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-cn 23152  df-cnp 23153  df-cmp 23312  df-conn 23337  df-lly 23391  df-nlly 23392  df-tx 23487  df-hmeo 23680  df-xms 24245  df-ms 24246  df-tms 24247  df-ii 24807  df-cncf 24808  df-htpy 24906  df-phtpy 24907  df-phtpc 24928  df-pconn 35276  df-sconn 35277  df-cvm 35311
This theorem is referenced by:  cvmliftpht  35373
  Copyright terms: Public domain W3C validator