|   | Mathbox for Mario Carneiro | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftiota | Structured version Visualization version GIF version | ||
| Description: Write out a function 𝐻 that is the unique lift of 𝐹. (Contributed by Mario Carneiro, 16-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| cvmliftiota.b | ⊢ 𝐵 = ∪ 𝐶 | 
| cvmliftiota.h | ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | 
| cvmliftiota.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | 
| cvmliftiota.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | 
| cvmliftiota.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) | 
| cvmliftiota.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | 
| Ref | Expression | 
|---|---|
| cvmliftiota | ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = 𝐺 ∧ (𝐻‘0) = 𝑃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cvmliftiota.h | . . . 4 ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | |
| 2 | coeq2 5868 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝐹 ∘ 𝑓) = (𝐹 ∘ 𝑔)) | |
| 3 | 2 | eqeq1d 2738 | . . . . . 6 ⊢ (𝑓 = 𝑔 → ((𝐹 ∘ 𝑓) = 𝐺 ↔ (𝐹 ∘ 𝑔) = 𝐺)) | 
| 4 | fveq1 6904 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → (𝑓‘0) = (𝑔‘0)) | |
| 5 | 4 | eqeq1d 2738 | . . . . . 6 ⊢ (𝑓 = 𝑔 → ((𝑓‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃)) | 
| 6 | 3, 5 | anbi12d 632 | . . . . 5 ⊢ (𝑓 = 𝑔 → (((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃) ↔ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃))) | 
| 7 | 6 | cbvriotavw 7399 | . . . 4 ⊢ (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃)) | 
| 8 | 1, 7 | eqtri 2764 | . . 3 ⊢ 𝐻 = (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃)) | 
| 9 | cvmliftiota.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) | |
| 10 | cvmliftiota.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 11 | cvmliftiota.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
| 12 | cvmliftiota.e | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) | |
| 13 | cvmliftiota.b | . . . . . 6 ⊢ 𝐵 = ∪ 𝐶 | |
| 14 | 13 | cvmlift 35305 | . . . . 5 ⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝑃 ∈ 𝐵 ∧ (𝐹‘𝑃) = (𝐺‘0))) → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃)) | 
| 15 | 9, 10, 11, 12, 14 | syl22anc 838 | . . . 4 ⊢ (𝜑 → ∃!𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃)) | 
| 16 | riotacl2 7405 | . . . 4 ⊢ (∃!𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃) → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃)) ∈ {𝑔 ∈ (II Cn 𝐶) ∣ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃)}) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → (℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃)) ∈ {𝑔 ∈ (II Cn 𝐶) ∣ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃)}) | 
| 18 | 8, 17 | eqeltrid 2844 | . 2 ⊢ (𝜑 → 𝐻 ∈ {𝑔 ∈ (II Cn 𝐶) ∣ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃)}) | 
| 19 | coeq2 5868 | . . . . . 6 ⊢ (𝑔 = 𝐻 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐻)) | |
| 20 | 19 | eqeq1d 2738 | . . . . 5 ⊢ (𝑔 = 𝐻 → ((𝐹 ∘ 𝑔) = 𝐺 ↔ (𝐹 ∘ 𝐻) = 𝐺)) | 
| 21 | fveq1 6904 | . . . . . 6 ⊢ (𝑔 = 𝐻 → (𝑔‘0) = (𝐻‘0)) | |
| 22 | 21 | eqeq1d 2738 | . . . . 5 ⊢ (𝑔 = 𝐻 → ((𝑔‘0) = 𝑃 ↔ (𝐻‘0) = 𝑃)) | 
| 23 | 20, 22 | anbi12d 632 | . . . 4 ⊢ (𝑔 = 𝐻 → (((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹 ∘ 𝐻) = 𝐺 ∧ (𝐻‘0) = 𝑃))) | 
| 24 | 23 | elrab 3691 | . . 3 ⊢ (𝐻 ∈ {𝑔 ∈ (II Cn 𝐶) ∣ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃)} ↔ (𝐻 ∈ (II Cn 𝐶) ∧ ((𝐹 ∘ 𝐻) = 𝐺 ∧ (𝐻‘0) = 𝑃))) | 
| 25 | 3anass 1094 | . . 3 ⊢ ((𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = 𝐺 ∧ (𝐻‘0) = 𝑃) ↔ (𝐻 ∈ (II Cn 𝐶) ∧ ((𝐹 ∘ 𝐻) = 𝐺 ∧ (𝐻‘0) = 𝑃))) | |
| 26 | 24, 25 | bitr4i 278 | . 2 ⊢ (𝐻 ∈ {𝑔 ∈ (II Cn 𝐶) ∣ ((𝐹 ∘ 𝑔) = 𝐺 ∧ (𝑔‘0) = 𝑃)} ↔ (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = 𝐺 ∧ (𝐻‘0) = 𝑃)) | 
| 27 | 18, 26 | sylib 218 | 1 ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = 𝐺 ∧ (𝐻‘0) = 𝑃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃!wreu 3377 {crab 3435 ∪ cuni 4906 ∘ ccom 5688 ‘cfv 6560 ℩crio 7388 (class class class)co 7432 0cc0 11156 Cn ccn 23233 IIcii 24902 CovMap ccvm 35261 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-ec 8748 df-map 8869 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-fi 9452 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-ioo 13392 df-ico 13394 df-icc 13395 df-fz 13549 df-fzo 13696 df-fl 13833 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-sum 15724 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-mulg 19087 df-cntz 19336 df-cmn 19801 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-cnfld 21366 df-top 22901 df-topon 22918 df-topsp 22940 df-bases 22954 df-cld 23028 df-ntr 23029 df-cls 23030 df-nei 23107 df-cn 23236 df-cnp 23237 df-cmp 23396 df-conn 23421 df-lly 23475 df-nlly 23476 df-tx 23571 df-hmeo 23764 df-xms 24331 df-ms 24332 df-tms 24333 df-ii 24904 df-cncf 24905 df-htpy 25003 df-phtpy 25004 df-phtpc 25025 df-pconn 35227 df-sconn 35228 df-cvm 35262 | 
| This theorem is referenced by: cvmlift2lem2 35310 cvmlift2lem3 35311 cvmliftphtlem 35323 cvmliftpht 35324 cvmlift3lem2 35326 cvmlift3lem4 35328 cvmlift3lem5 35329 cvmlift3lem6 35330 | 
| Copyright terms: Public domain | W3C validator |