![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > nmopadjlei | Structured version Visualization version GIF version |
Description: Property of the norm of an adjoint. Part of proof of Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopadjle.1 | ⊢ 𝑇 ∈ BndLinOp |
Ref | Expression |
---|---|
nmopadjlei | ⊢ (𝐴 ∈ ℋ → (normℎ‘((adjℎ‘𝑇)‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdopssadj 31197 | . . . . . 6 ⊢ BndLinOp ⊆ dom adjℎ | |
2 | nmopadjle.1 | . . . . . 6 ⊢ 𝑇 ∈ BndLinOp | |
3 | 1, 2 | sselii 3975 | . . . . 5 ⊢ 𝑇 ∈ dom adjℎ |
4 | adjvalval 31053 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) = (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓))) | |
5 | 3, 4 | mpan 688 | . . . 4 ⊢ (𝐴 ∈ ℋ → ((adjℎ‘𝑇)‘𝐴) = (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓))) |
6 | oveq2 7401 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → ((𝑇‘𝑣) ·ih 𝑧) = ((𝑇‘𝑣) ·ih 𝐴)) | |
7 | 6 | eqeq1d 2733 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓) ↔ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓))) |
8 | 7 | ralbidv 3176 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓) ↔ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓))) |
9 | 8 | riotabidv 7351 | . . . . 5 ⊢ (𝑧 = 𝐴 → (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)) = (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓))) |
10 | eqid 2731 | . . . . 5 ⊢ (𝑧 ∈ ℋ ↦ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓))) = (𝑧 ∈ ℋ ↦ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓))) | |
11 | riotaex 7353 | . . . . 5 ⊢ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓)) ∈ V | |
12 | 9, 10, 11 | fvmpt 6984 | . . . 4 ⊢ (𝐴 ∈ ℋ → ((𝑧 ∈ ℋ ↦ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)))‘𝐴) = (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓))) |
13 | 5, 12 | eqtr4d 2774 | . . 3 ⊢ (𝐴 ∈ ℋ → ((adjℎ‘𝑇)‘𝐴) = ((𝑧 ∈ ℋ ↦ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)))‘𝐴)) |
14 | 13 | fveq2d 6882 | . 2 ⊢ (𝐴 ∈ ℋ → (normℎ‘((adjℎ‘𝑇)‘𝐴)) = (normℎ‘((𝑧 ∈ ℋ ↦ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)))‘𝐴))) |
15 | inss1 4224 | . . . 4 ⊢ (LinOp ∩ ContOp) ⊆ LinOp | |
16 | lncnbd 31154 | . . . . 5 ⊢ (LinOp ∩ ContOp) = BndLinOp | |
17 | 2, 16 | eleqtrri 2831 | . . . 4 ⊢ 𝑇 ∈ (LinOp ∩ ContOp) |
18 | 15, 17 | sselii 3975 | . . 3 ⊢ 𝑇 ∈ LinOp |
19 | inss2 4225 | . . . 4 ⊢ (LinOp ∩ ContOp) ⊆ ContOp | |
20 | 19, 17 | sselii 3975 | . . 3 ⊢ 𝑇 ∈ ContOp |
21 | eqid 2731 | . . 3 ⊢ (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑧)) = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑧)) | |
22 | oveq2 7401 | . . . . . 6 ⊢ (𝑓 = 𝑤 → (𝑣 ·ih 𝑓) = (𝑣 ·ih 𝑤)) | |
23 | 22 | eqeq2d 2742 | . . . . 5 ⊢ (𝑓 = 𝑤 → (((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓) ↔ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑤))) |
24 | 23 | ralbidv 3176 | . . . 4 ⊢ (𝑓 = 𝑤 → (∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓) ↔ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑤))) |
25 | 24 | cbvriotavw 7359 | . . 3 ⊢ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)) = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑤)) |
26 | 18, 20, 21, 25, 10 | cnlnadjlem7 31189 | . 2 ⊢ (𝐴 ∈ ℋ → (normℎ‘((𝑧 ∈ ℋ ↦ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)))‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) |
27 | 14, 26 | eqbrtrd 5163 | 1 ⊢ (𝐴 ∈ ℋ → (normℎ‘((adjℎ‘𝑇)‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∀wral 3060 ∩ cin 3943 class class class wbr 5141 ↦ cmpt 5224 dom cdm 5669 ‘cfv 6532 ℩crio 7348 (class class class)co 7393 · cmul 11097 ≤ cle 11231 ℋchba 30035 ·ih csp 30038 normℎcno 30039 normopcnop 30061 ContOpccop 30062 LinOpclo 30063 BndLinOpcbo 30064 adjℎcado 30071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-inf2 9618 ax-cc 10412 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-pre-sup 11170 ax-addf 11171 ax-mulf 11172 ax-hilex 30115 ax-hfvadd 30116 ax-hvcom 30117 ax-hvass 30118 ax-hv0cl 30119 ax-hvaddid 30120 ax-hfvmul 30121 ax-hvmulid 30122 ax-hvmulass 30123 ax-hvdistr1 30124 ax-hvdistr2 30125 ax-hvmul0 30126 ax-hfi 30195 ax-his1 30198 ax-his2 30199 ax-his3 30200 ax-his4 30201 ax-hcompl 30318 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-of 7653 df-om 7839 df-1st 7957 df-2nd 7958 df-supp 8129 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-2o 8449 df-oadd 8452 df-omul 8453 df-er 8686 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9345 df-fi 9388 df-sup 9419 df-inf 9420 df-oi 9487 df-card 9916 df-acn 9919 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-dec 12660 df-uz 12805 df-q 12915 df-rp 12957 df-xneg 13074 df-xadd 13075 df-xmul 13076 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13467 df-fzo 13610 df-fl 13739 df-seq 13949 df-exp 14010 df-hash 14273 df-cj 15028 df-re 15029 df-im 15030 df-sqrt 15164 df-abs 15165 df-clim 15414 df-rlim 15415 df-sum 15615 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17350 df-topn 17351 df-0g 17369 df-gsum 17370 df-topgen 17371 df-pt 17372 df-prds 17375 df-xrs 17430 df-qtop 17435 df-imas 17436 df-xps 17438 df-mre 17512 df-mrc 17513 df-acs 17515 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-submnd 18648 df-mulg 18923 df-cntz 19147 df-cmn 19614 df-psmet 20870 df-xmet 20871 df-met 20872 df-bl 20873 df-mopn 20874 df-fbas 20875 df-fg 20876 df-cnfld 20879 df-top 22325 df-topon 22342 df-topsp 22364 df-bases 22378 df-cld 22452 df-ntr 22453 df-cls 22454 df-nei 22531 df-cn 22660 df-cnp 22661 df-lm 22662 df-t1 22747 df-haus 22748 df-tx 22995 df-hmeo 23188 df-fil 23279 df-fm 23371 df-flim 23372 df-flf 23373 df-xms 23755 df-ms 23756 df-tms 23757 df-cfil 24701 df-cau 24702 df-cmet 24703 df-grpo 29609 df-gid 29610 df-ginv 29611 df-gdiv 29612 df-ablo 29661 df-vc 29675 df-nv 29708 df-va 29711 df-ba 29712 df-sm 29713 df-0v 29714 df-vs 29715 df-nmcv 29716 df-ims 29717 df-dip 29817 df-ssp 29838 df-ph 29929 df-cbn 29979 df-hnorm 30084 df-hba 30085 df-hvsub 30087 df-hlim 30088 df-hcau 30089 df-sh 30323 df-ch 30337 df-oc 30368 df-ch0 30369 df-shs 30424 df-pjh 30511 df-h0op 30864 df-nmop 30955 df-cnop 30956 df-lnop 30957 df-bdop 30958 df-unop 30959 df-hmop 30960 df-nmfn 30961 df-nlfn 30962 df-cnfn 30963 df-lnfn 30964 df-adjh 30965 |
This theorem is referenced by: nmopadjlem 31205 |
Copyright terms: Public domain | W3C validator |