| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > nmopadjlei | Structured version Visualization version GIF version | ||
| Description: Property of the norm of an adjoint. Part of proof of Theorem 3.10 of [Beran] p. 104. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmopadjle.1 | ⊢ 𝑇 ∈ BndLinOp |
| Ref | Expression |
|---|---|
| nmopadjlei | ⊢ (𝐴 ∈ ℋ → (normℎ‘((adjℎ‘𝑇)‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdopssadj 32062 | . . . . . 6 ⊢ BndLinOp ⊆ dom adjℎ | |
| 2 | nmopadjle.1 | . . . . . 6 ⊢ 𝑇 ∈ BndLinOp | |
| 3 | 1, 2 | sselii 3955 | . . . . 5 ⊢ 𝑇 ∈ dom adjℎ |
| 4 | adjvalval 31918 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) = (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓))) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ ℋ → ((adjℎ‘𝑇)‘𝐴) = (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓))) |
| 6 | oveq2 7413 | . . . . . . . 8 ⊢ (𝑧 = 𝐴 → ((𝑇‘𝑣) ·ih 𝑧) = ((𝑇‘𝑣) ·ih 𝐴)) | |
| 7 | 6 | eqeq1d 2737 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓) ↔ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓))) |
| 8 | 7 | ralbidv 3163 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓) ↔ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓))) |
| 9 | 8 | riotabidv 7364 | . . . . 5 ⊢ (𝑧 = 𝐴 → (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)) = (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓))) |
| 10 | eqid 2735 | . . . . 5 ⊢ (𝑧 ∈ ℋ ↦ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓))) = (𝑧 ∈ ℋ ↦ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓))) | |
| 11 | riotaex 7366 | . . . . 5 ⊢ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓)) ∈ V | |
| 12 | 9, 10, 11 | fvmpt 6986 | . . . 4 ⊢ (𝐴 ∈ ℋ → ((𝑧 ∈ ℋ ↦ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)))‘𝐴) = (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝐴) = (𝑣 ·ih 𝑓))) |
| 13 | 5, 12 | eqtr4d 2773 | . . 3 ⊢ (𝐴 ∈ ℋ → ((adjℎ‘𝑇)‘𝐴) = ((𝑧 ∈ ℋ ↦ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)))‘𝐴)) |
| 14 | 13 | fveq2d 6880 | . 2 ⊢ (𝐴 ∈ ℋ → (normℎ‘((adjℎ‘𝑇)‘𝐴)) = (normℎ‘((𝑧 ∈ ℋ ↦ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)))‘𝐴))) |
| 15 | inss1 4212 | . . . 4 ⊢ (LinOp ∩ ContOp) ⊆ LinOp | |
| 16 | lncnbd 32019 | . . . . 5 ⊢ (LinOp ∩ ContOp) = BndLinOp | |
| 17 | 2, 16 | eleqtrri 2833 | . . . 4 ⊢ 𝑇 ∈ (LinOp ∩ ContOp) |
| 18 | 15, 17 | sselii 3955 | . . 3 ⊢ 𝑇 ∈ LinOp |
| 19 | inss2 4213 | . . . 4 ⊢ (LinOp ∩ ContOp) ⊆ ContOp | |
| 20 | 19, 17 | sselii 3955 | . . 3 ⊢ 𝑇 ∈ ContOp |
| 21 | eqid 2735 | . . 3 ⊢ (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑧)) = (𝑔 ∈ ℋ ↦ ((𝑇‘𝑔) ·ih 𝑧)) | |
| 22 | oveq2 7413 | . . . . . 6 ⊢ (𝑓 = 𝑤 → (𝑣 ·ih 𝑓) = (𝑣 ·ih 𝑤)) | |
| 23 | 22 | eqeq2d 2746 | . . . . 5 ⊢ (𝑓 = 𝑤 → (((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓) ↔ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑤))) |
| 24 | 23 | ralbidv 3163 | . . . 4 ⊢ (𝑓 = 𝑤 → (∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓) ↔ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑤))) |
| 25 | 24 | cbvriotavw 7372 | . . 3 ⊢ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)) = (℩𝑤 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑤)) |
| 26 | 18, 20, 21, 25, 10 | cnlnadjlem7 32054 | . 2 ⊢ (𝐴 ∈ ℋ → (normℎ‘((𝑧 ∈ ℋ ↦ (℩𝑓 ∈ ℋ ∀𝑣 ∈ ℋ ((𝑇‘𝑣) ·ih 𝑧) = (𝑣 ·ih 𝑓)))‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) |
| 27 | 14, 26 | eqbrtrd 5141 | 1 ⊢ (𝐴 ∈ ℋ → (normℎ‘((adjℎ‘𝑇)‘𝐴)) ≤ ((normop‘𝑇) · (normℎ‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∩ cin 3925 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ‘cfv 6531 ℩crio 7361 (class class class)co 7405 · cmul 11134 ≤ cle 11270 ℋchba 30900 ·ih csp 30903 normℎcno 30904 normopcnop 30926 ContOpccop 30927 LinOpclo 30928 BndLinOpcbo 30929 adjℎcado 30936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 ax-hilex 30980 ax-hfvadd 30981 ax-hvcom 30982 ax-hvass 30983 ax-hv0cl 30984 ax-hvaddid 30985 ax-hfvmul 30986 ax-hvmulid 30987 ax-hvmulass 30988 ax-hvdistr1 30989 ax-hvdistr2 30990 ax-hvmul0 30991 ax-hfi 31060 ax-his1 31063 ax-his2 31064 ax-his3 31065 ax-his4 31066 ax-hcompl 31183 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-sum 15703 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-cn 23165 df-cnp 23166 df-lm 23167 df-t1 23252 df-haus 23253 df-tx 23500 df-hmeo 23693 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-xms 24259 df-ms 24260 df-tms 24261 df-cfil 25207 df-cau 25208 df-cmet 25209 df-grpo 30474 df-gid 30475 df-ginv 30476 df-gdiv 30477 df-ablo 30526 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-vs 30580 df-nmcv 30581 df-ims 30582 df-dip 30682 df-ssp 30703 df-ph 30794 df-cbn 30844 df-hnorm 30949 df-hba 30950 df-hvsub 30952 df-hlim 30953 df-hcau 30954 df-sh 31188 df-ch 31202 df-oc 31233 df-ch0 31234 df-shs 31289 df-pjh 31376 df-h0op 31729 df-nmop 31820 df-cnop 31821 df-lnop 31822 df-bdop 31823 df-unop 31824 df-hmop 31825 df-nmfn 31826 df-nlfn 31827 df-cnfn 31828 df-lnfn 31829 df-adjh 31830 |
| This theorem is referenced by: nmopadjlem 32070 |
| Copyright terms: Public domain | W3C validator |