![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem39 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 41568. Eliminate 𝐽. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem38.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem38.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem38.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem38.p | ⊢ + = (+g‘𝑈) |
lcfrlem38.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfrlem38.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem38.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem38.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
lcfrlem38.c | ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lcfrlem38.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
lcfrlem38.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem38.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
lcfrlem38.gs | ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
lcfrlem38.xe | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
lcfrlem38.ye | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
lcfrlem38.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem38.x | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
lcfrlem38.y | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
lcfrlem38.sp | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem38.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem38.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem38.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem38.n | ⊢ (𝜑 → 𝐼 ≠ 0 ) |
Ref | Expression |
---|---|
lcfrlem39 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem38.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem38.o | . 2 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcfrlem38.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
4 | lcfrlem38.p | . 2 ⊢ + = (+g‘𝑈) | |
5 | lcfrlem38.f | . 2 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | lcfrlem38.l | . 2 ⊢ 𝐿 = (LKer‘𝑈) | |
7 | lcfrlem38.d | . 2 ⊢ 𝐷 = (LDual‘𝑈) | |
8 | lcfrlem38.q | . 2 ⊢ 𝑄 = (LSubSp‘𝐷) | |
9 | lcfrlem38.c | . 2 ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
10 | lcfrlem38.e | . 2 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
11 | lcfrlem38.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
12 | lcfrlem38.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
13 | lcfrlem38.gs | . 2 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) | |
14 | lcfrlem38.xe | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
15 | lcfrlem38.ye | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
16 | lcfrlem38.z | . 2 ⊢ 0 = (0g‘𝑈) | |
17 | lcfrlem38.x | . 2 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
18 | lcfrlem38.y | . 2 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
19 | lcfrlem38.sp | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
20 | lcfrlem38.ne | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
21 | lcfrlem38.b | . 2 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
22 | lcfrlem38.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
23 | lcfrlem38.n | . 2 ⊢ (𝜑 → 𝐼 ≠ 0 ) | |
24 | eqid 2735 | . 2 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
25 | eqid 2735 | . 2 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
26 | eqid 2735 | . 2 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
27 | eqid 2735 | . 2 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
28 | oveq1 7438 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑗( ·𝑠 ‘𝑈)𝑥) = (𝑘( ·𝑠 ‘𝑈)𝑥)) | |
29 | 28 | oveq2d 7447 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥)) = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥))) |
30 | 29 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥)) ↔ 𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥)))) |
31 | 30 | rexbidv 3177 | . . . . 5 ⊢ (𝑗 = 𝑘 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥)) ↔ ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥)))) |
32 | 31 | cbvriotavw 7398 | . . . 4 ⊢ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥))) = (℩𝑘 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥))) |
33 | 32 | mpteq2i 5253 | . . 3 ⊢ (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥)))) = (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥)))) |
34 | 33 | mpteq2i 5253 | . 2 ⊢ (𝑥 ∈ ((Base‘𝑈) ∖ { 0 }) ↦ (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥))))) = (𝑥 ∈ ((Base‘𝑈) ∖ { 0 }) ↦ (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥))))) |
35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 34 | lcfrlem38 41563 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 {crab 3433 ∖ cdif 3960 ∩ cin 3962 ⊆ wss 3963 {csn 4631 {cpr 4633 ∪ ciun 4996 ↦ cmpt 5231 ‘cfv 6563 ℩crio 7387 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Scalarcsca 17301 ·𝑠 cvsca 17302 0gc0g 17486 LSubSpclss 20947 LSpanclspn 20987 LFnlclfn 39039 LKerclk 39067 LDualcld 39105 HLchlt 39332 LHypclh 39967 DVecHcdvh 41061 ocHcoch 41330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-undef 8297 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-0g 17488 df-mre 17631 df-mrc 17632 df-acs 17634 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cntz 19348 df-oppg 19377 df-lsm 19669 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-nzr 20530 df-rlreg 20711 df-domn 20712 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lvec 21120 df-lsatoms 38958 df-lshyp 38959 df-lcv 39001 df-lfl 39040 df-lkr 39068 df-ldual 39106 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tgrp 40726 df-tendo 40738 df-edring 40740 df-dveca 40986 df-disoa 41012 df-dvech 41062 df-dib 41122 df-dic 41156 df-dih 41212 df-doch 41331 df-djh 41378 |
This theorem is referenced by: lcfrlem40 41565 |
Copyright terms: Public domain | W3C validator |