| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem39 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfr 41564. Eliminate 𝐽. (Contributed by NM, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| lcfrlem38.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcfrlem38.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcfrlem38.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcfrlem38.p | ⊢ + = (+g‘𝑈) |
| lcfrlem38.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcfrlem38.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcfrlem38.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcfrlem38.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
| lcfrlem38.c | ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| lcfrlem38.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
| lcfrlem38.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lcfrlem38.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
| lcfrlem38.gs | ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
| lcfrlem38.xe | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| lcfrlem38.ye | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
| lcfrlem38.z | ⊢ 0 = (0g‘𝑈) |
| lcfrlem38.x | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| lcfrlem38.y | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
| lcfrlem38.sp | ⊢ 𝑁 = (LSpan‘𝑈) |
| lcfrlem38.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| lcfrlem38.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
| lcfrlem38.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
| lcfrlem38.n | ⊢ (𝜑 → 𝐼 ≠ 0 ) |
| Ref | Expression |
|---|---|
| lcfrlem39 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem38.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | lcfrlem38.o | . 2 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 3 | lcfrlem38.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | lcfrlem38.p | . 2 ⊢ + = (+g‘𝑈) | |
| 5 | lcfrlem38.f | . 2 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 6 | lcfrlem38.l | . 2 ⊢ 𝐿 = (LKer‘𝑈) | |
| 7 | lcfrlem38.d | . 2 ⊢ 𝐷 = (LDual‘𝑈) | |
| 8 | lcfrlem38.q | . 2 ⊢ 𝑄 = (LSubSp‘𝐷) | |
| 9 | lcfrlem38.c | . 2 ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 10 | lcfrlem38.e | . 2 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
| 11 | lcfrlem38.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 12 | lcfrlem38.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
| 13 | lcfrlem38.gs | . 2 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) | |
| 14 | lcfrlem38.xe | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 15 | lcfrlem38.ye | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
| 16 | lcfrlem38.z | . 2 ⊢ 0 = (0g‘𝑈) | |
| 17 | lcfrlem38.x | . 2 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
| 18 | lcfrlem38.y | . 2 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
| 19 | lcfrlem38.sp | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 20 | lcfrlem38.ne | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 21 | lcfrlem38.b | . 2 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
| 22 | lcfrlem38.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
| 23 | lcfrlem38.n | . 2 ⊢ (𝜑 → 𝐼 ≠ 0 ) | |
| 24 | eqid 2729 | . 2 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 25 | eqid 2729 | . 2 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
| 26 | eqid 2729 | . 2 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 27 | eqid 2729 | . 2 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
| 28 | oveq1 7360 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑗( ·𝑠 ‘𝑈)𝑥) = (𝑘( ·𝑠 ‘𝑈)𝑥)) | |
| 29 | 28 | oveq2d 7369 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥)) = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥))) |
| 30 | 29 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥)) ↔ 𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥)))) |
| 31 | 30 | rexbidv 3153 | . . . . 5 ⊢ (𝑗 = 𝑘 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥)) ↔ ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥)))) |
| 32 | 31 | cbvriotavw 7320 | . . . 4 ⊢ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥))) = (℩𝑘 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥))) |
| 33 | 32 | mpteq2i 5191 | . . 3 ⊢ (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥)))) = (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥)))) |
| 34 | 33 | mpteq2i 5191 | . 2 ⊢ (𝑥 ∈ ((Base‘𝑈) ∖ { 0 }) ↦ (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑗( ·𝑠 ‘𝑈)𝑥))))) = (𝑥 ∈ ((Base‘𝑈) ∖ { 0 }) ↦ (𝑣 ∈ (Base‘𝑈) ↦ (℩𝑘 ∈ (Base‘(Scalar‘𝑈))∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘( ·𝑠 ‘𝑈)𝑥))))) |
| 35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 34 | lcfrlem38 41559 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3396 ∖ cdif 3902 ∩ cin 3904 ⊆ wss 3905 {csn 4579 {cpr 4581 ∪ ciun 4944 ↦ cmpt 5176 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Scalarcsca 17182 ·𝑠 cvsca 17183 0gc0g 17361 LSubSpclss 20852 LSpanclspn 20892 LFnlclfn 39035 LKerclk 39063 LDualcld 39101 HLchlt 39328 LHypclh 39963 DVecHcdvh 41057 ocHcoch 41326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-riotaBAD 38931 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-undef 8213 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-0g 17363 df-mre 17506 df-mrc 17507 df-acs 17509 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-clat 18423 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cntz 19214 df-oppg 19243 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-nzr 20416 df-rlreg 20597 df-domn 20598 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lvec 21025 df-lsatoms 38954 df-lshyp 38955 df-lcv 38997 df-lfl 39036 df-lkr 39064 df-ldual 39102 df-oposet 39154 df-ol 39156 df-oml 39157 df-covers 39244 df-ats 39245 df-atl 39276 df-cvlat 39300 df-hlat 39329 df-llines 39477 df-lplanes 39478 df-lvols 39479 df-lines 39480 df-psubsp 39482 df-pmap 39483 df-padd 39775 df-lhyp 39967 df-laut 39968 df-ldil 40083 df-ltrn 40084 df-trl 40138 df-tgrp 40722 df-tendo 40734 df-edring 40736 df-dveca 40982 df-disoa 41008 df-dvech 41058 df-dib 41118 df-dic 41152 df-dih 41208 df-doch 41327 df-djh 41374 |
| This theorem is referenced by: lcfrlem40 41561 |
| Copyright terms: Public domain | W3C validator |