Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl7N Structured version   Visualization version   GIF version

Theorem lcfl7N 41503
Description: Property of a functional with a closed kernel. Every nonzero functional is determined by a unique nonzero vector. Note that (𝐿𝐺) = 𝑉 means the functional is zero by lkr0f 39095. (Contributed by NM, 4-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lcfl6.h 𝐻 = (LHyp‘𝐾)
lcfl6.o = ((ocH‘𝐾)‘𝑊)
lcfl6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl6.v 𝑉 = (Base‘𝑈)
lcfl6.a + = (+g𝑈)
lcfl6.t · = ( ·𝑠𝑈)
lcfl6.s 𝑆 = (Scalar‘𝑈)
lcfl6.r 𝑅 = (Base‘𝑆)
lcfl6.z 0 = (0g𝑈)
lcfl6.f 𝐹 = (LFnl‘𝑈)
lcfl6.l 𝐿 = (LKer‘𝑈)
lcfl6.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfl6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl6.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lcfl7N (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
Distinct variable groups:   𝑣,𝑘,𝑤, +   𝑓,𝑘,𝑣,𝑤,𝑥,   𝑤, 0 ,𝑥   𝑥,𝐶   𝑓,𝐺,𝑥   𝑓,𝐹   𝑓,𝐿,𝑥   𝜑,𝑥   𝑅,𝑘,𝑣   𝑆,𝑘,𝑤,𝑥   𝑣,𝑉,𝑥   𝑥,𝑈   · ,𝑘,𝑣,𝑤   𝑥, +   𝑥,𝑅   𝑥, ·
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑓,𝑘)   𝐶(𝑤,𝑣,𝑓,𝑘)   + (𝑓)   𝑅(𝑤,𝑓)   𝑆(𝑣,𝑓)   · (𝑓)   𝑈(𝑤,𝑣,𝑓,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑓,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   0 (𝑣,𝑓,𝑘)

Proof of Theorem lcfl7N
Dummy variables 𝑙 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcfl6.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcfl6.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcfl6.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfl6.v . . 3 𝑉 = (Base‘𝑈)
5 lcfl6.a . . 3 + = (+g𝑈)
6 lcfl6.t . . 3 · = ( ·𝑠𝑈)
7 lcfl6.s . . 3 𝑆 = (Scalar‘𝑈)
8 lcfl6.r . . 3 𝑅 = (Base‘𝑆)
9 lcfl6.z . . 3 0 = (0g𝑈)
10 lcfl6.f . . 3 𝐹 = (LFnl‘𝑈)
11 lcfl6.l . . 3 𝐿 = (LKer‘𝑈)
12 lcfl6.c . . 3 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
13 lcfl6.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 lcfl6.g . . 3 (𝜑𝐺𝐹)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14lcfl6 41502 . 2 (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
1613ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 eqid 2737 . . . . . . . . . 10 (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
18 eqid 2737 . . . . . . . . . 10 (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
19 simplrl 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑥 ∈ (𝑉 ∖ { 0 }))
20 simplrr 778 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑦 ∈ (𝑉 ∖ { 0 }))
21 simprl 771 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
22 eqeq1 2741 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑢 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑢 = (𝑤 + (𝑘 · 𝑥))))
2322rexbidv 3179 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥))))
2423riotabidv 7390 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥))))
25 oveq1 7438 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥))
2625oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑤 + (𝑘 · 𝑥)) = (𝑤 + (𝑙 · 𝑥)))
2726eqeq2d 2748 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑢 = (𝑤 + (𝑙 · 𝑥))))
2827rexbidv 3179 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑙 · 𝑥))))
29 oveq1 7438 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑤 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑥)))
3029eqeq2d 2748 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → (𝑢 = (𝑤 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥))))
3130cbvrexvw 3238 . . . . . . . . . . . . . . . 16 (∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))
3228, 31bitrdi 287 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
3332cbvriotavw 7398 . . . . . . . . . . . . . 14 (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))
3424, 33eqtrdi 2793 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
3534cbvmptv 5255 . . . . . . . . . . . 12 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
3621, 35eqtrdi 2793 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))))
37 simprr 773 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))
38 eqeq1 2741 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑢 → (𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑢 = (𝑤 + (𝑘 · 𝑦))))
3938rexbidv 3179 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (∃𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦))))
4039riotabidv 7390 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦))))
41 oveq1 7438 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (𝑘 · 𝑦) = (𝑙 · 𝑦))
4241oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑤 + (𝑘 · 𝑦)) = (𝑤 + (𝑙 · 𝑦)))
4342eqeq2d 2748 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑢 = (𝑤 + (𝑙 · 𝑦))))
4443rexbidv 3179 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑙 · 𝑦))))
45 oveq1 7438 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑤 + (𝑙 · 𝑦)) = (𝑧 + (𝑙 · 𝑦)))
4645eqeq2d 2748 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → (𝑢 = (𝑤 + (𝑙 · 𝑦)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦))))
4746cbvrexvw 3238 . . . . . . . . . . . . . . . 16 (∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑙 · 𝑦)) ↔ ∃𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))
4844, 47bitrdi 287 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
4948cbvriotavw 7398 . . . . . . . . . . . . . 14 (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))
5040, 49eqtrdi 2793 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
5150cbvmptv 5255 . . . . . . . . . . . 12 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
5237, 51eqtrdi 2793 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
5336, 52eqtr3d 2779 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 53lcfl7lem 41501 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑥 = 𝑦)
5554ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) → ((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))
5655ralrimivva 3202 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))
5756a1d 25 . . . . . 6 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦)))
5857ancld 550 . . . . 5 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))))
59 sneq 4636 . . . . . . . . . . 11 (𝑥 = 𝑦 → {𝑥} = {𝑦})
6059fveq2d 6910 . . . . . . . . . 10 (𝑥 = 𝑦 → ( ‘{𝑥}) = ( ‘{𝑦}))
61 oveq2 7439 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑘 · 𝑥) = (𝑘 · 𝑦))
6261oveq2d 7447 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑤 + (𝑘 · 𝑥)) = (𝑤 + (𝑘 · 𝑦)))
6362eqeq2d 2748 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑤 + (𝑘 · 𝑦))))
6460, 63rexeqbidv 3347 . . . . . . . . 9 (𝑥 = 𝑦 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))
6564riotabidv 7390 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))
6665mpteq2dv 5244 . . . . . . 7 (𝑥 = 𝑦 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))
6766eqeq2d 2748 . . . . . 6 (𝑥 = 𝑦 → (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))))
6867reu4 3737 . . . . 5 (∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦)))
6958, 68imbitrrdi 252 . . . 4 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
70 reurex 3384 . . . 4 (∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
7169, 70impbid1 225 . . 3 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
7271orbi2d 916 . 2 (𝜑 → (((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) ↔ ((𝐿𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
7315, 72bitrd 279 1 (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  wrex 3070  ∃!wreu 3378  {crab 3436  cdif 3948  {csn 4626  cmpt 5225  cfv 6561  crio 7387  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  LFnlclfn 39058  LKerclk 39086  HLchlt 39351  LHypclh 39986  DVecHcdvh 41080  ocHcoch 41349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-undef 8298  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17486  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102  df-lsatoms 38977  df-lshyp 38978  df-lfl 39059  df-lkr 39087  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161  df-tgrp 40745  df-tendo 40757  df-edring 40759  df-dveca 41005  df-disoa 41031  df-dvech 41081  df-dib 41141  df-dic 41175  df-dih 41231  df-doch 41350  df-djh 41397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator