Step | Hyp | Ref
| Expression |
1 | | lcfl6.h |
. . 3
β’ π» = (LHypβπΎ) |
2 | | lcfl6.o |
. . 3
β’ β₯ =
((ocHβπΎ)βπ) |
3 | | lcfl6.u |
. . 3
β’ π = ((DVecHβπΎ)βπ) |
4 | | lcfl6.v |
. . 3
β’ π = (Baseβπ) |
5 | | lcfl6.a |
. . 3
β’ + =
(+gβπ) |
6 | | lcfl6.t |
. . 3
β’ Β· = (
Β·π βπ) |
7 | | lcfl6.s |
. . 3
β’ π = (Scalarβπ) |
8 | | lcfl6.r |
. . 3
β’ π
= (Baseβπ) |
9 | | lcfl6.z |
. . 3
β’ 0 =
(0gβπ) |
10 | | lcfl6.f |
. . 3
β’ πΉ = (LFnlβπ) |
11 | | lcfl6.l |
. . 3
β’ πΏ = (LKerβπ) |
12 | | lcfl6.c |
. . 3
β’ πΆ = {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} |
13 | | lcfl6.k |
. . 3
β’ (π β (πΎ β HL β§ π β π»)) |
14 | | lcfl6.g |
. . 3
β’ (π β πΊ β πΉ) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14 | lcfl6 40359 |
. 2
β’ (π β (πΊ β πΆ β ((πΏβπΊ) = π β¨ βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))))) |
16 | 13 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β { 0 }))) β§ (πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)))))) β (πΎ β HL β§ π β π»)) |
17 | | eqid 2732 |
. . . . . . . . . 10
β’ (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯)))) = (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯)))) |
18 | | eqid 2732 |
. . . . . . . . . 10
β’ (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦)))) = (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦)))) |
19 | | simplrl 775 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β { 0 }))) β§ (πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)))))) β π₯ β (π β { 0 })) |
20 | | simplrr 776 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β { 0 }))) β§ (πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)))))) β π¦ β (π β { 0 })) |
21 | | simprl 769 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β { 0 }))) β§ (πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)))))) β πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) |
22 | | eqeq1 2736 |
. . . . . . . . . . . . . . . 16
β’ (π£ = π’ β (π£ = (π€ + (π Β· π₯)) β π’ = (π€ + (π Β· π₯)))) |
23 | 22 | rexbidv 3178 |
. . . . . . . . . . . . . . 15
β’ (π£ = π’ β (βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)) β βπ€ β ( β₯ β{π₯})π’ = (π€ + (π Β· π₯)))) |
24 | 23 | riotabidv 7363 |
. . . . . . . . . . . . . 14
β’ (π£ = π’ β (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))) = (β©π β π
βπ€ β ( β₯ β{π₯})π’ = (π€ + (π Β· π₯)))) |
25 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = π β (π Β· π₯) = (π Β· π₯)) |
26 | 25 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π β (π€ + (π Β· π₯)) = (π€ + (π Β· π₯))) |
27 | 26 | eqeq2d 2743 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β (π’ = (π€ + (π Β· π₯)) β π’ = (π€ + (π Β· π₯)))) |
28 | 27 | rexbidv 3178 |
. . . . . . . . . . . . . . . 16
β’ (π = π β (βπ€ β ( β₯ β{π₯})π’ = (π€ + (π Β· π₯)) β βπ€ β ( β₯ β{π₯})π’ = (π€ + (π Β· π₯)))) |
29 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . 18
β’ (π€ = π§ β (π€ + (π Β· π₯)) = (π§ + (π Β· π₯))) |
30 | 29 | eqeq2d 2743 |
. . . . . . . . . . . . . . . . 17
β’ (π€ = π§ β (π’ = (π€ + (π Β· π₯)) β π’ = (π§ + (π Β· π₯)))) |
31 | 30 | cbvrexvw 3235 |
. . . . . . . . . . . . . . . 16
β’
(βπ€ β (
β₯
β{π₯})π’ = (π€ + (π Β· π₯)) β βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯))) |
32 | 28, 31 | bitrdi 286 |
. . . . . . . . . . . . . . 15
β’ (π = π β (βπ€ β ( β₯ β{π₯})π’ = (π€ + (π Β· π₯)) β βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯)))) |
33 | 32 | cbvriotavw 7371 |
. . . . . . . . . . . . . 14
β’
(β©π
β π
βπ€ β ( β₯ β{π₯})π’ = (π€ + (π Β· π₯))) = (β©π β π
βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯))) |
34 | 24, 33 | eqtrdi 2788 |
. . . . . . . . . . . . 13
β’ (π£ = π’ β (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))) = (β©π β π
βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯)))) |
35 | 34 | cbvmptv 5260 |
. . . . . . . . . . . 12
β’ (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) = (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯)))) |
36 | 21, 35 | eqtrdi 2788 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β { 0 }))) β§ (πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)))))) β πΊ = (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯))))) |
37 | | simprr 771 |
. . . . . . . . . . . 12
β’ (((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β { 0 }))) β§ (πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)))))) β πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦))))) |
38 | | eqeq1 2736 |
. . . . . . . . . . . . . . . 16
β’ (π£ = π’ β (π£ = (π€ + (π Β· π¦)) β π’ = (π€ + (π Β· π¦)))) |
39 | 38 | rexbidv 3178 |
. . . . . . . . . . . . . . 15
β’ (π£ = π’ β (βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)) β βπ€ β ( β₯ β{π¦})π’ = (π€ + (π Β· π¦)))) |
40 | 39 | riotabidv 7363 |
. . . . . . . . . . . . . 14
β’ (π£ = π’ β (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦))) = (β©π β π
βπ€ β ( β₯ β{π¦})π’ = (π€ + (π Β· π¦)))) |
41 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = π β (π Β· π¦) = (π Β· π¦)) |
42 | 41 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π β (π€ + (π Β· π¦)) = (π€ + (π Β· π¦))) |
43 | 42 | eqeq2d 2743 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β (π’ = (π€ + (π Β· π¦)) β π’ = (π€ + (π Β· π¦)))) |
44 | 43 | rexbidv 3178 |
. . . . . . . . . . . . . . . 16
β’ (π = π β (βπ€ β ( β₯ β{π¦})π’ = (π€ + (π Β· π¦)) β βπ€ β ( β₯ β{π¦})π’ = (π€ + (π Β· π¦)))) |
45 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . 18
β’ (π€ = π§ β (π€ + (π Β· π¦)) = (π§ + (π Β· π¦))) |
46 | 45 | eqeq2d 2743 |
. . . . . . . . . . . . . . . . 17
β’ (π€ = π§ β (π’ = (π€ + (π Β· π¦)) β π’ = (π§ + (π Β· π¦)))) |
47 | 46 | cbvrexvw 3235 |
. . . . . . . . . . . . . . . 16
β’
(βπ€ β (
β₯
β{π¦})π’ = (π€ + (π Β· π¦)) β βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦))) |
48 | 44, 47 | bitrdi 286 |
. . . . . . . . . . . . . . 15
β’ (π = π β (βπ€ β ( β₯ β{π¦})π’ = (π€ + (π Β· π¦)) β βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦)))) |
49 | 48 | cbvriotavw 7371 |
. . . . . . . . . . . . . 14
β’
(β©π
β π
βπ€ β ( β₯ β{π¦})π’ = (π€ + (π Β· π¦))) = (β©π β π
βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦))) |
50 | 40, 49 | eqtrdi 2788 |
. . . . . . . . . . . . 13
β’ (π£ = π’ β (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦))) = (β©π β π
βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦)))) |
51 | 50 | cbvmptv 5260 |
. . . . . . . . . . . 12
β’ (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)))) = (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦)))) |
52 | 37, 51 | eqtrdi 2788 |
. . . . . . . . . . 11
β’ (((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β { 0 }))) β§ (πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)))))) β πΊ = (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦))))) |
53 | 36, 52 | eqtr3d 2774 |
. . . . . . . . . 10
β’ (((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β { 0 }))) β§ (πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)))))) β (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π₯})π’ = (π§ + (π Β· π₯)))) = (π’ β π β¦ (β©π β π
βπ§ β ( β₯ β{π¦})π’ = (π§ + (π Β· π¦))))) |
54 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 16, 17, 18, 19, 20, 53 | lcfl7lem 40358 |
. . . . . . . . 9
β’ (((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β { 0 }))) β§ (πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)))))) β π₯ = π¦) |
55 | 54 | ex 413 |
. . . . . . . 8
β’ ((π β§ (π₯ β (π β { 0 }) β§ π¦ β (π β { 0 }))) β ((πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦))))) β π₯ = π¦)) |
56 | 55 | ralrimivva 3200 |
. . . . . . 7
β’ (π β βπ₯ β (π β { 0 })βπ¦ β (π β { 0 })((πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦))))) β π₯ = π¦)) |
57 | 56 | a1d 25 |
. . . . . 6
β’ (π β (βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β βπ₯ β (π β { 0 })βπ¦ β (π β { 0 })((πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦))))) β π₯ = π¦))) |
58 | 57 | ancld 551 |
. . . . 5
β’ (π β (βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β (βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ βπ₯ β (π β { 0 })βπ¦ β (π β { 0 })((πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦))))) β π₯ = π¦)))) |
59 | | sneq 4637 |
. . . . . . . . . . 11
β’ (π₯ = π¦ β {π₯} = {π¦}) |
60 | 59 | fveq2d 6892 |
. . . . . . . . . 10
β’ (π₯ = π¦ β ( β₯ β{π₯}) = ( β₯ β{π¦})) |
61 | | oveq2 7413 |
. . . . . . . . . . . 12
β’ (π₯ = π¦ β (π Β· π₯) = (π Β· π¦)) |
62 | 61 | oveq2d 7421 |
. . . . . . . . . . 11
β’ (π₯ = π¦ β (π€ + (π Β· π₯)) = (π€ + (π Β· π¦))) |
63 | 62 | eqeq2d 2743 |
. . . . . . . . . 10
β’ (π₯ = π¦ β (π£ = (π€ + (π Β· π₯)) β π£ = (π€ + (π Β· π¦)))) |
64 | 60, 63 | rexeqbidv 3343 |
. . . . . . . . 9
β’ (π₯ = π¦ β (βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)) β βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)))) |
65 | 64 | riotabidv 7363 |
. . . . . . . 8
β’ (π₯ = π¦ β (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))) = (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)))) |
66 | 65 | mpteq2dv 5249 |
. . . . . . 7
β’ (π₯ = π¦ β (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦))))) |
67 | 66 | eqeq2d 2743 |
. . . . . 6
β’ (π₯ = π¦ β (πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦)))))) |
68 | 67 | reu4 3726 |
. . . . 5
β’
(β!π₯ β
(π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β (βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ βπ₯ β (π β { 0 })βπ¦ β (π β { 0 })((πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π¦})π£ = (π€ + (π Β· π¦))))) β π₯ = π¦))) |
69 | 58, 68 | syl6ibr 251 |
. . . 4
β’ (π β (βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β β!π₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))))) |
70 | | reurex 3380 |
. . . 4
β’
(β!π₯ β
(π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) |
71 | 69, 70 | impbid1 224 |
. . 3
β’ (π β (βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β β!π₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))))) |
72 | 71 | orbi2d 914 |
. 2
β’ (π β (((πΏβπΊ) = π β¨ βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) β ((πΏβπΊ) = π β¨ β!π₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))))) |
73 | 15, 72 | bitrd 278 |
1
β’ (π β (πΊ β πΆ β ((πΏβπΊ) = π β¨ β!π₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))))) |