Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl7N Structured version   Visualization version   GIF version

Theorem lcfl7N 39160
Description: Property of a functional with a closed kernel. Every nonzero functional is determined by a unique nonzero vector. Note that (𝐿𝐺) = 𝑉 means the functional is zero by lkr0f 36753. (Contributed by NM, 4-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lcfl6.h 𝐻 = (LHyp‘𝐾)
lcfl6.o = ((ocH‘𝐾)‘𝑊)
lcfl6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl6.v 𝑉 = (Base‘𝑈)
lcfl6.a + = (+g𝑈)
lcfl6.t · = ( ·𝑠𝑈)
lcfl6.s 𝑆 = (Scalar‘𝑈)
lcfl6.r 𝑅 = (Base‘𝑆)
lcfl6.z 0 = (0g𝑈)
lcfl6.f 𝐹 = (LFnl‘𝑈)
lcfl6.l 𝐿 = (LKer‘𝑈)
lcfl6.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfl6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl6.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lcfl7N (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
Distinct variable groups:   𝑣,𝑘,𝑤, +   𝑓,𝑘,𝑣,𝑤,𝑥,   𝑤, 0 ,𝑥   𝑥,𝐶   𝑓,𝐺,𝑥   𝑓,𝐹   𝑓,𝐿,𝑥   𝜑,𝑥   𝑅,𝑘,𝑣   𝑆,𝑘,𝑤,𝑥   𝑣,𝑉,𝑥   𝑥,𝑈   · ,𝑘,𝑣,𝑤   𝑥, +   𝑥,𝑅   𝑥, ·
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑓,𝑘)   𝐶(𝑤,𝑣,𝑓,𝑘)   + (𝑓)   𝑅(𝑤,𝑓)   𝑆(𝑣,𝑓)   · (𝑓)   𝑈(𝑤,𝑣,𝑓,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑓,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   0 (𝑣,𝑓,𝑘)

Proof of Theorem lcfl7N
Dummy variables 𝑙 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcfl6.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcfl6.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcfl6.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfl6.v . . 3 𝑉 = (Base‘𝑈)
5 lcfl6.a . . 3 + = (+g𝑈)
6 lcfl6.t . . 3 · = ( ·𝑠𝑈)
7 lcfl6.s . . 3 𝑆 = (Scalar‘𝑈)
8 lcfl6.r . . 3 𝑅 = (Base‘𝑆)
9 lcfl6.z . . 3 0 = (0g𝑈)
10 lcfl6.f . . 3 𝐹 = (LFnl‘𝑈)
11 lcfl6.l . . 3 𝐿 = (LKer‘𝑈)
12 lcfl6.c . . 3 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
13 lcfl6.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 lcfl6.g . . 3 (𝜑𝐺𝐹)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14lcfl6 39159 . 2 (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
1613ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 eqid 2738 . . . . . . . . . 10 (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
18 eqid 2738 . . . . . . . . . 10 (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
19 simplrl 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑥 ∈ (𝑉 ∖ { 0 }))
20 simplrr 778 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑦 ∈ (𝑉 ∖ { 0 }))
21 simprl 771 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
22 eqeq1 2742 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑢 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑢 = (𝑤 + (𝑘 · 𝑥))))
2322rexbidv 3207 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥))))
2423riotabidv 7131 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥))))
25 oveq1 7179 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥))
2625oveq2d 7188 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑤 + (𝑘 · 𝑥)) = (𝑤 + (𝑙 · 𝑥)))
2726eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑢 = (𝑤 + (𝑙 · 𝑥))))
2827rexbidv 3207 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑙 · 𝑥))))
29 oveq1 7179 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑤 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑥)))
3029eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → (𝑢 = (𝑤 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥))))
3130cbvrexvw 3350 . . . . . . . . . . . . . . . 16 (∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))
3228, 31bitrdi 290 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
3332cbvriotavw 7139 . . . . . . . . . . . . . 14 (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))
3424, 33eqtrdi 2789 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
3534cbvmptv 5133 . . . . . . . . . . . 12 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
3621, 35eqtrdi 2789 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))))
37 simprr 773 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))
38 eqeq1 2742 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑢 → (𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑢 = (𝑤 + (𝑘 · 𝑦))))
3938rexbidv 3207 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (∃𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦))))
4039riotabidv 7131 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦))))
41 oveq1 7179 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (𝑘 · 𝑦) = (𝑙 · 𝑦))
4241oveq2d 7188 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑤 + (𝑘 · 𝑦)) = (𝑤 + (𝑙 · 𝑦)))
4342eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑢 = (𝑤 + (𝑙 · 𝑦))))
4443rexbidv 3207 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑙 · 𝑦))))
45 oveq1 7179 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑤 + (𝑙 · 𝑦)) = (𝑧 + (𝑙 · 𝑦)))
4645eqeq2d 2749 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → (𝑢 = (𝑤 + (𝑙 · 𝑦)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦))))
4746cbvrexvw 3350 . . . . . . . . . . . . . . . 16 (∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑙 · 𝑦)) ↔ ∃𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))
4844, 47bitrdi 290 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
4948cbvriotavw 7139 . . . . . . . . . . . . . 14 (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))
5040, 49eqtrdi 2789 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
5150cbvmptv 5133 . . . . . . . . . . . 12 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
5237, 51eqtrdi 2789 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
5336, 52eqtr3d 2775 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 53lcfl7lem 39158 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑥 = 𝑦)
5554ex 416 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) → ((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))
5655ralrimivva 3103 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))
5756a1d 25 . . . . . 6 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦)))
5857ancld 554 . . . . 5 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))))
59 sneq 4526 . . . . . . . . . . 11 (𝑥 = 𝑦 → {𝑥} = {𝑦})
6059fveq2d 6680 . . . . . . . . . 10 (𝑥 = 𝑦 → ( ‘{𝑥}) = ( ‘{𝑦}))
61 oveq2 7180 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑘 · 𝑥) = (𝑘 · 𝑦))
6261oveq2d 7188 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑤 + (𝑘 · 𝑥)) = (𝑤 + (𝑘 · 𝑦)))
6362eqeq2d 2749 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑤 + (𝑘 · 𝑦))))
6460, 63rexeqbidv 3305 . . . . . . . . 9 (𝑥 = 𝑦 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))
6564riotabidv 7131 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))
6665mpteq2dv 5126 . . . . . . 7 (𝑥 = 𝑦 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))
6766eqeq2d 2749 . . . . . 6 (𝑥 = 𝑦 → (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))))
6867reu4 3630 . . . . 5 (∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦)))
6958, 68syl6ibr 255 . . . 4 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
70 reurex 3329 . . . 4 (∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
7169, 70impbid1 228 . . 3 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
7271orbi2d 915 . 2 (𝜑 → (((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) ↔ ((𝐿𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
7315, 72bitrd 282 1 (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 846   = wceq 1542  wcel 2114  wral 3053  wrex 3054  ∃!wreu 3055  {crab 3057  cdif 3840  {csn 4516  cmpt 5110  cfv 6339  crio 7128  (class class class)co 7172  Basecbs 16588  +gcplusg 16670  Scalarcsca 16673   ·𝑠 cvsca 16674  0gc0g 16818  LFnlclfn 36716  LKerclk 36744  HLchlt 37009  LHypclh 37643  DVecHcdvh 38737  ocHcoch 39006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-cnex 10673  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694  ax-riotaBAD 36612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-om 7602  df-1st 7716  df-2nd 7717  df-tpos 7923  df-undef 7970  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-1o 8133  df-er 8322  df-map 8441  df-en 8558  df-dom 8559  df-sdom 8560  df-fin 8561  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-nn 11719  df-2 11781  df-3 11782  df-4 11783  df-5 11784  df-6 11785  df-n0 11979  df-z 12065  df-uz 12327  df-fz 12984  df-struct 16590  df-ndx 16591  df-slot 16592  df-base 16594  df-sets 16595  df-ress 16596  df-plusg 16683  df-mulr 16684  df-sca 16686  df-vsca 16687  df-0g 16820  df-proset 17656  df-poset 17674  df-plt 17686  df-lub 17702  df-glb 17703  df-join 17704  df-meet 17705  df-p0 17767  df-p1 17768  df-lat 17774  df-clat 17836  df-mgm 17970  df-sgrp 18019  df-mnd 18030  df-submnd 18075  df-grp 18224  df-minusg 18225  df-sbg 18226  df-subg 18396  df-cntz 18567  df-lsm 18881  df-cmn 19028  df-abl 19029  df-mgp 19361  df-ur 19373  df-ring 19420  df-oppr 19497  df-dvdsr 19515  df-unit 19516  df-invr 19546  df-dvr 19557  df-drng 19625  df-lmod 19757  df-lss 19825  df-lsp 19865  df-lvec 19996  df-lsatoms 36635  df-lshyp 36636  df-lfl 36717  df-lkr 36745  df-oposet 36835  df-ol 36837  df-oml 36838  df-covers 36925  df-ats 36926  df-atl 36957  df-cvlat 36981  df-hlat 37010  df-llines 37157  df-lplanes 37158  df-lvols 37159  df-lines 37160  df-psubsp 37162  df-pmap 37163  df-padd 37455  df-lhyp 37647  df-laut 37648  df-ldil 37763  df-ltrn 37764  df-trl 37818  df-tgrp 38402  df-tendo 38414  df-edring 38416  df-dveca 38662  df-disoa 38688  df-dvech 38738  df-dib 38798  df-dic 38832  df-dih 38888  df-doch 39007  df-djh 39054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator