Step | Hyp | Ref
| Expression |
1 | | lcfl6.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | lcfl6.o |
. . 3
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
3 | | lcfl6.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
4 | | lcfl6.v |
. . 3
⊢ 𝑉 = (Base‘𝑈) |
5 | | lcfl6.a |
. . 3
⊢ + =
(+g‘𝑈) |
6 | | lcfl6.t |
. . 3
⊢ · = (
·𝑠 ‘𝑈) |
7 | | lcfl6.s |
. . 3
⊢ 𝑆 = (Scalar‘𝑈) |
8 | | lcfl6.r |
. . 3
⊢ 𝑅 = (Base‘𝑆) |
9 | | lcfl6.z |
. . 3
⊢ 0 =
(0g‘𝑈) |
10 | | lcfl6.f |
. . 3
⊢ 𝐹 = (LFnl‘𝑈) |
11 | | lcfl6.l |
. . 3
⊢ 𝐿 = (LKer‘𝑈) |
12 | | lcfl6.c |
. . 3
⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
13 | | lcfl6.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
14 | | lcfl6.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14 | lcfl6 39441 |
. 2
⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ((𝐿‘𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))) |
16 | 13 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
17 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
18 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
19 | | simplrl 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑥 ∈ (𝑉 ∖ { 0 })) |
20 | | simplrr 774 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑦 ∈ (𝑉 ∖ { 0 })) |
21 | | simprl 767 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
22 | | eqeq1 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑢 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑢 = (𝑤 + (𝑘 · 𝑥)))) |
23 | 22 | rexbidv 3225 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑢 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥)))) |
24 | 23 | riotabidv 7214 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑢 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥)))) |
25 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥)) |
26 | 25 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑙 → (𝑤 + (𝑘 · 𝑥)) = (𝑤 + (𝑙 · 𝑥))) |
27 | 26 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑙 → (𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑢 = (𝑤 + (𝑙 · 𝑥)))) |
28 | 27 | rexbidv 3225 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑙 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑤 + (𝑙 · 𝑥)))) |
29 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑧 → (𝑤 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑥))) |
30 | 29 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → (𝑢 = (𝑤 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
31 | 30 | cbvrexvw 3373 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑤 ∈ (
⊥
‘{𝑥})𝑢 = (𝑤 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))) |
32 | 28, 31 | bitrdi 286 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑙 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
33 | 32 | cbvriotavw 7222 |
. . . . . . . . . . . . . 14
⊢
(℩𝑘
∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))) |
34 | 24, 33 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑢 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
35 | 34 | cbvmptv 5183 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) |
36 | 21, 35 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))) |
37 | | simprr 769 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) |
38 | | eqeq1 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑢 → (𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑢 = (𝑤 + (𝑘 · 𝑦)))) |
39 | 38 | rexbidv 3225 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑢 → (∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦)))) |
40 | 39 | riotabidv 7214 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑢 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦)))) |
41 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑙 → (𝑘 · 𝑦) = (𝑙 · 𝑦)) |
42 | 41 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑙 → (𝑤 + (𝑘 · 𝑦)) = (𝑤 + (𝑙 · 𝑦))) |
43 | 42 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑙 → (𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑢 = (𝑤 + (𝑙 · 𝑦)))) |
44 | 43 | rexbidv 3225 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑙 → (∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑤 + (𝑙 · 𝑦)))) |
45 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑧 → (𝑤 + (𝑙 · 𝑦)) = (𝑧 + (𝑙 · 𝑦))) |
46 | 45 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → (𝑢 = (𝑤 + (𝑙 · 𝑦)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
47 | 46 | cbvrexvw 3373 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑤 ∈ (
⊥
‘{𝑦})𝑢 = (𝑤 + (𝑙 · 𝑦)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))) |
48 | 44, 47 | bitrdi 286 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑙 → (∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
49 | 48 | cbvriotavw 7222 |
. . . . . . . . . . . . . 14
⊢
(℩𝑘
∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))) |
50 | 40, 49 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑢 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
51 | 50 | cbvmptv 5183 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) |
52 | 37, 51 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
53 | 36, 52 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝑅 ∃𝑧 ∈ ( ⊥ ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))) |
54 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 16, 17, 18, 19, 20, 53 | lcfl7lem 39440 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑥 = 𝑦) |
55 | 54 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) → ((𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦)) |
56 | 55 | ralrimivva 3114 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦)) |
57 | 56 | a1d 25 |
. . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))) |
58 | 57 | ancld 550 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦)))) |
59 | | sneq 4568 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
60 | 59 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ( ⊥ ‘{𝑥}) = ( ⊥ ‘{𝑦})) |
61 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑘 · 𝑥) = (𝑘 · 𝑦)) |
62 | 61 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑤 + (𝑘 · 𝑥)) = (𝑤 + (𝑘 · 𝑦))) |
63 | 62 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑤 + (𝑘 · 𝑦)))) |
64 | 60, 63 | rexeqbidv 3328 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))) |
65 | 64 | riotabidv 7214 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))) |
66 | 65 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) |
67 | 66 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) |
68 | 67 | reu4 3661 |
. . . . 5
⊢
(∃!𝑥 ∈
(𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))) |
69 | 58, 68 | syl6ibr 251 |
. . . 4
⊢ (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))) |
70 | | reurex 3352 |
. . . 4
⊢
(∃!𝑥 ∈
(𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
71 | 69, 70 | impbid1 224 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))) |
72 | 71 | orbi2d 912 |
. 2
⊢ (𝜑 → (((𝐿‘𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) ↔ ((𝐿‘𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))) |
73 | 15, 72 | bitrd 278 |
1
⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ((𝐿‘𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))) |