Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl7N Structured version   Visualization version   GIF version

Theorem lcfl7N 41502
Description: Property of a functional with a closed kernel. Every nonzero functional is determined by a unique nonzero vector. Note that (𝐿𝐺) = 𝑉 means the functional is zero by lkr0f 39094. (Contributed by NM, 4-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lcfl6.h 𝐻 = (LHyp‘𝐾)
lcfl6.o = ((ocH‘𝐾)‘𝑊)
lcfl6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl6.v 𝑉 = (Base‘𝑈)
lcfl6.a + = (+g𝑈)
lcfl6.t · = ( ·𝑠𝑈)
lcfl6.s 𝑆 = (Scalar‘𝑈)
lcfl6.r 𝑅 = (Base‘𝑆)
lcfl6.z 0 = (0g𝑈)
lcfl6.f 𝐹 = (LFnl‘𝑈)
lcfl6.l 𝐿 = (LKer‘𝑈)
lcfl6.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfl6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl6.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lcfl7N (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
Distinct variable groups:   𝑣,𝑘,𝑤, +   𝑓,𝑘,𝑣,𝑤,𝑥,   𝑤, 0 ,𝑥   𝑥,𝐶   𝑓,𝐺,𝑥   𝑓,𝐹   𝑓,𝐿,𝑥   𝜑,𝑥   𝑅,𝑘,𝑣   𝑆,𝑘,𝑤,𝑥   𝑣,𝑉,𝑥   𝑥,𝑈   · ,𝑘,𝑣,𝑤   𝑥, +   𝑥,𝑅   𝑥, ·
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑓,𝑘)   𝐶(𝑤,𝑣,𝑓,𝑘)   + (𝑓)   𝑅(𝑤,𝑓)   𝑆(𝑣,𝑓)   · (𝑓)   𝑈(𝑤,𝑣,𝑓,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑓,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   0 (𝑣,𝑓,𝑘)

Proof of Theorem lcfl7N
Dummy variables 𝑙 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcfl6.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcfl6.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcfl6.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfl6.v . . 3 𝑉 = (Base‘𝑈)
5 lcfl6.a . . 3 + = (+g𝑈)
6 lcfl6.t . . 3 · = ( ·𝑠𝑈)
7 lcfl6.s . . 3 𝑆 = (Scalar‘𝑈)
8 lcfl6.r . . 3 𝑅 = (Base‘𝑆)
9 lcfl6.z . . 3 0 = (0g𝑈)
10 lcfl6.f . . 3 𝐹 = (LFnl‘𝑈)
11 lcfl6.l . . 3 𝐿 = (LKer‘𝑈)
12 lcfl6.c . . 3 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
13 lcfl6.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14 lcfl6.g . . 3 (𝜑𝐺𝐹)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14lcfl6 41501 . 2 (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
1613ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 eqid 2730 . . . . . . . . . 10 (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
18 eqid 2730 . . . . . . . . . 10 (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
19 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑥 ∈ (𝑉 ∖ { 0 }))
20 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑦 ∈ (𝑉 ∖ { 0 }))
21 simprl 770 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
22 eqeq1 2734 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑢 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑢 = (𝑤 + (𝑘 · 𝑥))))
2322rexbidv 3158 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥))))
2423riotabidv 7349 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥))))
25 oveq1 7397 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (𝑘 · 𝑥) = (𝑙 · 𝑥))
2625oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑤 + (𝑘 · 𝑥)) = (𝑤 + (𝑙 · 𝑥)))
2726eqeq2d 2741 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑢 = (𝑤 + (𝑙 · 𝑥))))
2827rexbidv 3158 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑙 · 𝑥))))
29 oveq1 7397 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑤 + (𝑙 · 𝑥)) = (𝑧 + (𝑙 · 𝑥)))
3029eqeq2d 2741 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → (𝑢 = (𝑤 + (𝑙 · 𝑥)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑥))))
3130cbvrexvw 3217 . . . . . . . . . . . . . . . 16 (∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑙 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))
3228, 31bitrdi 287 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
3332cbvriotavw 7357 . . . . . . . . . . . . . 14 (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑢 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))
3424, 33eqtrdi 2781 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
3534cbvmptv 5214 . . . . . . . . . . . 12 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥))))
3621, 35eqtrdi 2781 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))))
37 simprr 772 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))
38 eqeq1 2734 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑢 → (𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑢 = (𝑤 + (𝑘 · 𝑦))))
3938rexbidv 3158 . . . . . . . . . . . . . . 15 (𝑣 = 𝑢 → (∃𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦))))
4039riotabidv 7349 . . . . . . . . . . . . . 14 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦))))
41 oveq1 7397 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑙 → (𝑘 · 𝑦) = (𝑙 · 𝑦))
4241oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑤 + (𝑘 · 𝑦)) = (𝑤 + (𝑙 · 𝑦)))
4342eqeq2d 2741 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → (𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ 𝑢 = (𝑤 + (𝑙 · 𝑦))))
4443rexbidv 3158 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑙 · 𝑦))))
45 oveq1 7397 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑤 + (𝑙 · 𝑦)) = (𝑧 + (𝑙 · 𝑦)))
4645eqeq2d 2741 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → (𝑢 = (𝑤 + (𝑙 · 𝑦)) ↔ 𝑢 = (𝑧 + (𝑙 · 𝑦))))
4746cbvrexvw 3217 . . . . . . . . . . . . . . . 16 (∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑙 · 𝑦)) ↔ ∃𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))
4844, 47bitrdi 287 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (∃𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦)) ↔ ∃𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
4948cbvriotavw 7357 . . . . . . . . . . . . . 14 (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑢 = (𝑤 + (𝑘 · 𝑦))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))
5040, 49eqtrdi 2781 . . . . . . . . . . . . 13 (𝑣 = 𝑢 → (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))) = (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
5150cbvmptv 5214 . . . . . . . . . . . 12 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦))))
5237, 51eqtrdi 2781 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝐺 = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
5336, 52eqtr3d 2767 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑥})𝑢 = (𝑧 + (𝑙 · 𝑥)))) = (𝑢𝑉 ↦ (𝑙𝑅𝑧 ∈ ( ‘{𝑦})𝑢 = (𝑧 + (𝑙 · 𝑦)))))
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 53lcfl7lem 41500 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) ∧ (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))) → 𝑥 = 𝑦)
5554ex 412 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝑦 ∈ (𝑉 ∖ { 0 }))) → ((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))
5655ralrimivva 3181 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))
5756a1d 25 . . . . . 6 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦)))
5857ancld 550 . . . . 5 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦))))
59 sneq 4602 . . . . . . . . . . 11 (𝑥 = 𝑦 → {𝑥} = {𝑦})
6059fveq2d 6865 . . . . . . . . . 10 (𝑥 = 𝑦 → ( ‘{𝑥}) = ( ‘{𝑦}))
61 oveq2 7398 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑘 · 𝑥) = (𝑘 · 𝑦))
6261oveq2d 7406 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑤 + (𝑘 · 𝑥)) = (𝑤 + (𝑘 · 𝑦)))
6362eqeq2d 2741 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ 𝑣 = (𝑤 + (𝑘 · 𝑦))))
6460, 63rexeqbidv 3322 . . . . . . . . 9 (𝑥 = 𝑦 → (∃𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)) ↔ ∃𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))
6564riotabidv 7349 . . . . . . . 8 (𝑥 = 𝑦 → (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))) = (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))
6665mpteq2dv 5204 . . . . . . 7 (𝑥 = 𝑦 → (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦)))))
6766eqeq2d 2741 . . . . . 6 (𝑥 = 𝑦 → (𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))))
6867reu4 3705 . . . . 5 (∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ ∀𝑥 ∈ (𝑉 ∖ { 0 })∀𝑦 ∈ (𝑉 ∖ { 0 })((𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑦})𝑣 = (𝑤 + (𝑘 · 𝑦))))) → 𝑥 = 𝑦)))
6958, 68imbitrrdi 252 . . . 4 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
70 reurex 3360 . . . 4 (∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
7169, 70impbid1 225 . . 3 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) ↔ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
7271orbi2d 915 . 2 (𝜑 → (((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) ↔ ((𝐿𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
7315, 72bitrd 279 1 (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃!𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  wrex 3054  ∃!wreu 3354  {crab 3408  cdif 3914  {csn 4592  cmpt 5191  cfv 6514  crio 7346  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  LFnlclfn 39057  LKerclk 39085  HLchlt 39350  LHypclh 39985  DVecHcdvh 41079  ocHcoch 41348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lsatoms 38976  df-lshyp 38977  df-lfl 39058  df-lkr 39086  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tgrp 40744  df-tendo 40756  df-edring 40758  df-dveca 41004  df-disoa 41030  df-dvech 41080  df-dib 41140  df-dic 41174  df-dih 41230  df-doch 41349  df-djh 41396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator