Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkuvN | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma1 (p) function 𝑈. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemk1.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk1.l | ⊢ ≤ = (le‘𝐾) |
cdlemk1.j | ⊢ ∨ = (join‘𝐾) |
cdlemk1.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk1.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
cdlemk1.o | ⊢ 𝑂 = (𝑆‘𝐷) |
cdlemk1.u | ⊢ 𝑈 = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) |
Ref | Expression |
---|---|
cdlemkuvN | ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk1.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemk1.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemk1.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemk1.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdlemk1.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdlemk1.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | cdlemk1.r | . 2 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
8 | cdlemk1.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
9 | cdlemk1.u | . 2 ⊢ 𝑈 = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cdlemksv 38858 | 1 ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ◡ccnv 5588 ∘ ccom 5593 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 meetcmee 18030 Atomscatm 37277 LHypclh 37998 LTrncltrn 38115 trLctrl 38172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-ov 7278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |