Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkuvN Structured version   Visualization version   GIF version

Theorem cdlemkuvN 40821
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma1 (p) function 𝑈. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk1.b 𝐵 = (Base‘𝐾)
cdlemk1.l = (le‘𝐾)
cdlemk1.j = (join‘𝐾)
cdlemk1.m = (meet‘𝐾)
cdlemk1.a 𝐴 = (Atoms‘𝐾)
cdlemk1.h 𝐻 = (LHyp‘𝐾)
cdlemk1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk1.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk1.o 𝑂 = (𝑆𝐷)
cdlemk1.u 𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))
Assertion
Ref Expression
cdlemkuvN (𝐺𝑇 → (𝑈𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷))))))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐷,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖   ,𝑒   ,𝑒   𝐷,𝑒   𝑒,𝑗,𝐺   𝑒,𝑂   𝑃,𝑒   𝑅,𝑒   𝑇,𝑒   𝑒,𝑊
Allowed substitution hints:   𝐴(𝑒,𝑓,𝑗)   𝐵(𝑒,𝑓,𝑖,𝑗)   𝐷(𝑗)   𝑃(𝑗)   𝑅(𝑗)   𝑆(𝑒,𝑓,𝑖,𝑗)   𝑇(𝑗)   𝑈(𝑒,𝑓,𝑖,𝑗)   𝐹(𝑒,𝑗)   𝐺(𝑓,𝑖)   𝐻(𝑒,𝑓,𝑗)   (𝑗)   𝐾(𝑒,𝑓,𝑗)   (𝑒,𝑓,𝑗)   (𝑗)   𝑁(𝑒,𝑗)   𝑂(𝑓,𝑖,𝑗)   𝑊(𝑗)

Proof of Theorem cdlemkuvN
StepHypRef Expression
1 cdlemk1.b . 2 𝐵 = (Base‘𝐾)
2 cdlemk1.l . 2 = (le‘𝐾)
3 cdlemk1.j . 2 = (join‘𝐾)
4 cdlemk1.a . 2 𝐴 = (Atoms‘𝐾)
5 cdlemk1.h . 2 𝐻 = (LHyp‘𝐾)
6 cdlemk1.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 cdlemk1.r . 2 𝑅 = ((trL‘𝐾)‘𝑊)
8 cdlemk1.m . 2 = (meet‘𝐾)
9 cdlemk1.u . 2 𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))
101, 2, 3, 4, 5, 6, 7, 8, 9cdlemksv 40801 1 (𝐺𝑇 → (𝑈𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cmpt 5249  ccnv 5699  ccom 5704  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  Atomscatm 39219  LHypclh 39941  LTrncltrn 40058  trLctrl 40115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-riota 7404  df-ov 7451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator