![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkuvN | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma1 (p) function 𝑈. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemk1.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk1.l | ⊢ ≤ = (le‘𝐾) |
cdlemk1.j | ⊢ ∨ = (join‘𝐾) |
cdlemk1.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk1.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
cdlemk1.o | ⊢ 𝑂 = (𝑆‘𝐷) |
cdlemk1.u | ⊢ 𝑈 = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) |
Ref | Expression |
---|---|
cdlemkuvN | ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk1.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemk1.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemk1.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemk1.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdlemk1.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdlemk1.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | cdlemk1.r | . 2 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
8 | cdlemk1.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
9 | cdlemk1.u | . 2 ⊢ 𝑈 = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cdlemksv 36864 | 1 ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ↦ cmpt 4923 ◡ccnv 5312 ∘ ccom 5317 ‘cfv 6102 ℩crio 6839 (class class class)co 6879 Basecbs 16183 lecple 16273 joincjn 17258 meetcmee 17259 Atomscatm 35283 LHypclh 36004 LTrncltrn 36121 trLctrl 36178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-iota 6065 df-fun 6104 df-fv 6110 df-riota 6840 df-ov 6882 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |