Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkuvN Structured version   Visualization version   GIF version

Theorem cdlemkuvN 36884
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma1 (p) function 𝑈. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk1.b 𝐵 = (Base‘𝐾)
cdlemk1.l = (le‘𝐾)
cdlemk1.j = (join‘𝐾)
cdlemk1.m = (meet‘𝐾)
cdlemk1.a 𝐴 = (Atoms‘𝐾)
cdlemk1.h 𝐻 = (LHyp‘𝐾)
cdlemk1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk1.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk1.o 𝑂 = (𝑆𝐷)
cdlemk1.u 𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))
Assertion
Ref Expression
cdlemkuvN (𝐺𝑇 → (𝑈𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷))))))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐷,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖   ,𝑒   ,𝑒   𝐷,𝑒   𝑒,𝑗,𝐺   𝑒,𝑂   𝑃,𝑒   𝑅,𝑒   𝑇,𝑒   𝑒,𝑊
Allowed substitution hints:   𝐴(𝑒,𝑓,𝑗)   𝐵(𝑒,𝑓,𝑖,𝑗)   𝐷(𝑗)   𝑃(𝑗)   𝑅(𝑗)   𝑆(𝑒,𝑓,𝑖,𝑗)   𝑇(𝑗)   𝑈(𝑒,𝑓,𝑖,𝑗)   𝐹(𝑒,𝑗)   𝐺(𝑓,𝑖)   𝐻(𝑒,𝑓,𝑗)   (𝑗)   𝐾(𝑒,𝑓,𝑗)   (𝑒,𝑓,𝑗)   (𝑗)   𝑁(𝑒,𝑗)   𝑂(𝑓,𝑖,𝑗)   𝑊(𝑗)

Proof of Theorem cdlemkuvN
StepHypRef Expression
1 cdlemk1.b . 2 𝐵 = (Base‘𝐾)
2 cdlemk1.l . 2 = (le‘𝐾)
3 cdlemk1.j . 2 = (join‘𝐾)
4 cdlemk1.a . 2 𝐴 = (Atoms‘𝐾)
5 cdlemk1.h . 2 𝐻 = (LHyp‘𝐾)
6 cdlemk1.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 cdlemk1.r . 2 𝑅 = ((trL‘𝐾)‘𝑊)
8 cdlemk1.m . 2 = (meet‘𝐾)
9 cdlemk1.u . 2 𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))
101, 2, 3, 4, 5, 6, 7, 8, 9cdlemksv 36864 1 (𝐺𝑇 → (𝑈𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  cmpt 4923  ccnv 5312  ccom 5317  cfv 6102  crio 6839  (class class class)co 6879  Basecbs 16183  lecple 16273  joincjn 17258  meetcmee 17259  Atomscatm 35283  LHypclh 36004  LTrncltrn 36121  trLctrl 36178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pr 5098
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-iota 6065  df-fun 6104  df-fv 6110  df-riota 6840  df-ov 6882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator