Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkj | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 2-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk1.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk1.l | ⊢ ≤ = (le‘𝐾) |
cdlemk1.j | ⊢ ∨ = (join‘𝐾) |
cdlemk1.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk1.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
cdlemk1.o | ⊢ 𝑂 = (𝑆‘𝐷) |
cdlemk.z | ⊢ 𝑍 = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷))))) |
Ref | Expression |
---|---|
cdlemkj | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑍 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11l 1286 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐾 ∈ HL) | |
2 | simp11r 1287 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑊 ∈ 𝐻) | |
3 | simp33 1213 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
4 | cdlemk1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
5 | cdlemk1.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
6 | cdlemk1.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | cdlemk1.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
8 | cdlemk1.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | cdlemk1.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
10 | cdlemk1.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
11 | cdlemk1.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
12 | cdlemk1.s | . . 3 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
13 | cdlemk1.o | . . 3 ⊢ 𝑂 = (𝑆‘𝐷) | |
14 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | cdlemk16a 38607 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))) ∈ 𝐴 ∧ ¬ ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))) ≤ 𝑊)) |
15 | cdlemk.z | . . 3 ⊢ 𝑍 = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷))))) | |
16 | 5, 8, 9, 10, 15 | ltrniotacl 38330 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))) ∈ 𝐴 ∧ ¬ ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))) ≤ 𝑊)) → 𝑍 ∈ 𝑇) |
17 | 1, 2, 3, 14, 16 | syl211anc 1378 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝑍 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 class class class wbr 5053 ↦ cmpt 5135 I cid 5454 ◡ccnv 5550 ↾ cres 5553 ∘ ccom 5555 ‘cfv 6380 ℩crio 7169 (class class class)co 7213 Basecbs 16760 lecple 16809 joincjn 17818 meetcmee 17819 Atomscatm 37014 HLchlt 37101 LHypclh 37735 LTrncltrn 37852 trLctrl 37909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-riotaBAD 36704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-undef 8015 df-map 8510 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-clat 18005 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-llines 37249 df-lplanes 37250 df-lvols 37251 df-lines 37252 df-psubsp 37254 df-pmap 37255 df-padd 37547 df-lhyp 37739 df-laut 37740 df-ldil 37855 df-ltrn 37856 df-trl 37910 |
This theorem is referenced by: cdlemkuel 38616 cdlemkj-2N 38633 |
Copyright terms: Public domain | W3C validator |