![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkuel | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. Conditions for the sigma1 (p) function to be a translation. TODO: combine cdlemkj 40224? (Contributed by NM, 2-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk1.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk1.l | ⊢ ≤ = (le‘𝐾) |
cdlemk1.j | ⊢ ∨ = (join‘𝐾) |
cdlemk1.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk1.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
cdlemk1.o | ⊢ 𝑂 = (𝑆‘𝐷) |
cdlemk1.u | ⊢ 𝑈 = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) |
Ref | Expression |
---|---|
cdlemkuel | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑈‘𝐺) ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp13 1202 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐺 ∈ 𝑇) | |
2 | cdlemk1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
3 | cdlemk1.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
4 | cdlemk1.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
5 | cdlemk1.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemk1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemk1.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | cdlemk1.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
9 | cdlemk1.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
10 | cdlemk1.u | . . . 4 ⊢ 𝑈 = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdlemksv 40205 | . . 3 ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))))) |
12 | 1, 11 | syl 17 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑈‘𝐺) = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))))) |
13 | cdlemk1.s | . . 3 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
14 | cdlemk1.o | . . 3 ⊢ 𝑂 = (𝑆‘𝐷) | |
15 | eqid 2724 | . . 3 ⊢ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷))))) = (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷))))) | |
16 | 2, 3, 4, 9, 5, 6, 7, 8, 13, 14, 15 | cdlemkj 40224 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷))))) ∈ 𝑇) |
17 | 12, 16 | eqeltrd 2825 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑈‘𝐺) ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 class class class wbr 5138 ↦ cmpt 5221 I cid 5563 ◡ccnv 5665 ↾ cres 5668 ∘ ccom 5670 ‘cfv 6533 ℩crio 7356 (class class class)co 7401 Basecbs 17143 lecple 17203 joincjn 18266 meetcmee 18267 Atomscatm 38623 HLchlt 38710 LHypclh 39345 LTrncltrn 39462 trLctrl 39519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-riotaBAD 38313 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-undef 8253 df-map 8818 df-proset 18250 df-poset 18268 df-plt 18285 df-lub 18301 df-glb 18302 df-join 18303 df-meet 18304 df-p0 18380 df-p1 18381 df-lat 18387 df-clat 18454 df-oposet 38536 df-ol 38538 df-oml 38539 df-covers 38626 df-ats 38627 df-atl 38658 df-cvlat 38682 df-hlat 38711 df-llines 38859 df-lplanes 38860 df-lvols 38861 df-lines 38862 df-psubsp 38864 df-pmap 38865 df-padd 39157 df-lhyp 39349 df-laut 39350 df-ldil 39465 df-ltrn 39466 df-trl 39520 |
This theorem is referenced by: cdlemkuat 40227 cdlemkuv2 40228 cdlemk19 40230 cdlemk12u 40233 cdlemkuel-2N 40245 cdlemkuel-3 40259 |
Copyright terms: Public domain | W3C validator |