MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlks Structured version   Visualization version   GIF version

Theorem clwlks 29573
Description: The set of closed walks (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 16-Feb-2021.) (Revised by AV, 29-Oct-2021.)
Assertion
Ref Expression
clwlks (ClWalksβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)))}
Distinct variable group:   𝑓,𝐺,𝑝

Proof of Theorem clwlks
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 biidd 262 . 2 (𝑔 = 𝐺 β†’ ((π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)) ↔ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“))))
2 df-clwlks 29572 . 2 ClWalks = (𝑔 ∈ V ↦ {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜π‘”)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)))})
31, 2fvmptopab 7468 1 (ClWalksβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)))}
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 395   = wceq 1534   class class class wbr 5142  {copab 5204  β€˜cfv 6542  0cc0 11130  β™―chash 14313  Walkscwlks 29397  ClWalkscclwlks 29571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-clwlks 29572
This theorem is referenced by:  isclwlk  29574  clwlkwlk  29576  clwlkcompim  29581
  Copyright terms: Public domain W3C validator