![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlks | Structured version Visualization version GIF version |
Description: The set of closed walks (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 16-Feb-2021.) (Revised by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
clwlks | β’ (ClWalksβπΊ) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 262 | . 2 β’ (π = πΊ β ((πβ0) = (πβ(β―βπ)) β (πβ0) = (πβ(β―βπ)))) | |
2 | df-clwlks 29572 | . 2 β’ ClWalks = (π β V β¦ {β¨π, πβ© β£ (π(Walksβπ)π β§ (πβ0) = (πβ(β―βπ)))}) | |
3 | 1, 2 | fvmptopab 7468 | 1 β’ (ClWalksβπΊ) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))} |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 = wceq 1534 class class class wbr 5142 {copab 5204 βcfv 6542 0cc0 11130 β―chash 14313 Walkscwlks 29397 ClWalkscclwlks 29571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-clwlks 29572 |
This theorem is referenced by: isclwlk 29574 clwlkwlk 29576 clwlkcompim 29581 |
Copyright terms: Public domain | W3C validator |