![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlks | Structured version Visualization version GIF version |
Description: The set of closed walks (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 16-Feb-2021.) (Revised by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
clwlks | β’ (ClWalksβπΊ) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 262 | . 2 β’ (π = πΊ β ((πβ0) = (πβ(β―βπ)) β (πβ0) = (πβ(β―βπ)))) | |
2 | df-clwlks 29497 | . 2 β’ ClWalks = (π β V β¦ {β¨π, πβ© β£ (π(Walksβπ)π β§ (πβ0) = (πβ(β―βπ)))}) | |
3 | 1, 2 | fvmptopab 7455 | 1 β’ (ClWalksβπΊ) = {β¨π, πβ© β£ (π(WalksβπΊ)π β§ (πβ0) = (πβ(β―βπ)))} |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 = wceq 1533 class class class wbr 5138 {copab 5200 βcfv 6533 0cc0 11106 β―chash 14287 Walkscwlks 29322 ClWalkscclwlks 29496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-iota 6485 df-fun 6535 df-fv 6541 df-clwlks 29497 |
This theorem is referenced by: isclwlk 29499 clwlkwlk 29501 clwlkcompim 29506 |
Copyright terms: Public domain | W3C validator |