MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclwlk Structured version   Visualization version   GIF version

Theorem isclwlk 29736
Description: A pair of functions represents a closed walk iff it represents a walk in which the first vertex is equal to the last vertex. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
isclwlk (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))

Proof of Theorem isclwlk
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwlks 29735 . 2 (ClWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}
2 fveq1 6825 . . . 4 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
32adantl 481 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝‘0) = (𝑃‘0))
4 simpr 484 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
5 fveq2 6826 . . . . 5 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
65adantr 480 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (♯‘𝑓) = (♯‘𝐹))
74, 6fveq12d 6833 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝‘(♯‘𝑓)) = (𝑃‘(♯‘𝐹)))
83, 7eqeq12d 2745 . 2 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
9 relwlk 29589 . 2 Rel (Walks‘𝐺)
101, 8, 9brfvopabrbr 6931 1 (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   class class class wbr 5095  cfv 6486  0cc0 11028  chash 14255  Walkscwlks 29560  ClWalkscclwlks 29733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-wlks 29563  df-clwlks 29734
This theorem is referenced by:  clwlkiswlk  29737  isclwlke  29740  isclwlkupgr  29741  clwlkcompbp  29745  clwlkl1loop  29746  crctisclwlk  29757  clwlkclwwlkflem  29966  clwlkclwwlkf  29970  0clwlk  30092
  Copyright terms: Public domain W3C validator