![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isclwlk | Structured version Visualization version GIF version |
Description: A pair of functions represents a closed walk iff it represents a walk in which the first vertex is equal to the last vertex. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
isclwlk | ⊢ (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlks 29658 | . 2 ⊢ (ClWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} | |
2 | fveq1 6895 | . . . 4 ⊢ (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0)) | |
3 | 2 | adantl 480 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝‘0) = (𝑃‘0)) |
4 | simpr 483 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) | |
5 | fveq2 6896 | . . . . 5 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
6 | 5 | adantr 479 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (♯‘𝑓) = (♯‘𝐹)) |
7 | 4, 6 | fveq12d 6903 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝‘(♯‘𝑓)) = (𝑃‘(♯‘𝐹))) |
8 | 3, 7 | eqeq12d 2741 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
9 | relwlk 29512 | . 2 ⊢ Rel (Walks‘𝐺) | |
10 | 1, 8, 9 | brfvopabrbr 7001 | 1 ⊢ (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 class class class wbr 5149 ‘cfv 6549 0cc0 11140 ♯chash 14325 Walkscwlks 29482 ClWalkscclwlks 29656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fv 6557 df-wlks 29485 df-clwlks 29657 |
This theorem is referenced by: clwlkiswlk 29660 isclwlke 29663 isclwlkupgr 29664 clwlkcompbp 29668 clwlkl1loop 29669 crctisclwlk 29680 clwlkclwwlkflem 29886 clwlkclwwlkf 29890 0clwlk 30012 |
Copyright terms: Public domain | W3C validator |