MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclwlk Structured version   Visualization version   GIF version

Theorem isclwlk 29749
Description: A pair of functions represents a closed walk iff it represents a walk in which the first vertex is equal to the last vertex. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
isclwlk (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))

Proof of Theorem isclwlk
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwlks 29748 . 2 (ClWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}
2 fveq1 6821 . . . 4 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
32adantl 481 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝‘0) = (𝑃‘0))
4 simpr 484 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
5 fveq2 6822 . . . . 5 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
65adantr 480 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (♯‘𝑓) = (♯‘𝐹))
74, 6fveq12d 6829 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝‘(♯‘𝑓)) = (𝑃‘(♯‘𝐹)))
83, 7eqeq12d 2747 . 2 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
9 relwlk 29602 . 2 Rel (Walks‘𝐺)
101, 8, 9brfvopabrbr 6926 1 (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541   class class class wbr 5091  cfv 6481  0cc0 11003  chash 14234  Walkscwlks 29573  ClWalkscclwlks 29746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-wlks 29576  df-clwlks 29747
This theorem is referenced by:  clwlkiswlk  29750  isclwlke  29753  isclwlkupgr  29754  clwlkcompbp  29758  clwlkl1loop  29759  crctisclwlk  29770  clwlkclwwlkflem  29979  clwlkclwwlkf  29983  0clwlk  30105
  Copyright terms: Public domain W3C validator