MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclwlk Structured version   Visualization version   GIF version

Theorem isclwlk 29465
Description: A pair of functions represents a closed walk iff it represents a walk in which the first vertex is equal to the last vertex. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
isclwlk (𝐹(ClWalksβ€˜πΊ)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))

Proof of Theorem isclwlk
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 clwlks 29464 . 2 (ClWalksβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Walksβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)))}
2 fveq1 6890 . . . 4 (𝑝 = 𝑃 β†’ (π‘β€˜0) = (π‘ƒβ€˜0))
32adantl 481 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (π‘β€˜0) = (π‘ƒβ€˜0))
4 simpr 484 . . . 4 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ 𝑝 = 𝑃)
5 fveq2 6891 . . . . 5 (𝑓 = 𝐹 β†’ (β™―β€˜π‘“) = (β™―β€˜πΉ))
65adantr 480 . . . 4 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (β™―β€˜π‘“) = (β™―β€˜πΉ))
74, 6fveq12d 6898 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (π‘β€˜(β™―β€˜π‘“)) = (π‘ƒβ€˜(β™―β€˜πΉ)))
83, 7eqeq12d 2747 . 2 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ ((π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)) ↔ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
9 relwlk 29318 . 2 Rel (Walksβ€˜πΊ)
101, 8, 9brfvopabrbr 6995 1 (𝐹(ClWalksβ€˜πΊ)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   = wceq 1540   class class class wbr 5148  β€˜cfv 6543  0cc0 11116  β™―chash 14297  Walkscwlks 29288  ClWalkscclwlks 29462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-wlks 29291  df-clwlks 29463
This theorem is referenced by:  clwlkiswlk  29466  isclwlke  29469  isclwlkupgr  29470  clwlkcompbp  29474  clwlkl1loop  29475  crctisclwlk  29486  clwlkclwwlkflem  29692  clwlkclwwlkf  29696  0clwlk  29818
  Copyright terms: Public domain W3C validator