| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqrspc2v | Structured version Visualization version GIF version | ||
| Description: Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.) |
| Ref | Expression |
|---|---|
| oveqrspc2v.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Ref | Expression |
|---|---|
| oveqrspc2v | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqrspc2v.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) | |
| 2 | 1 | ralrimivva 3178 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| 3 | oveq1 7376 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐹𝑦) = (𝑋𝐹𝑦)) | |
| 4 | oveq1 7376 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐺𝑦) = (𝑋𝐺𝑦)) | |
| 5 | 3, 4 | eqeq12d 2745 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝐹𝑦) = (𝑥𝐺𝑦) ↔ (𝑋𝐹𝑦) = (𝑋𝐺𝑦))) |
| 6 | oveq2 7377 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐹𝑦) = (𝑋𝐹𝑌)) | |
| 7 | oveq2 7377 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐺𝑦) = (𝑋𝐺𝑌)) | |
| 8 | 6, 7 | eqeq12d 2745 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝐹𝑦) = (𝑋𝐺𝑦) ↔ (𝑋𝐹𝑌) = (𝑋𝐺𝑌))) |
| 9 | 5, 8 | rspc2v 3596 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌))) |
| 10 | 2, 9 | mpan9 506 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: grpidpropd 18572 gsumpropd2lem 18589 sgrppropd 18641 mndpropd 18669 grpsubpropd2 18961 cmnpropd 19706 rngpropd 20095 ringpropd 20209 lmodprop2d 20863 lsspropd 20957 lmhmpropd 21013 lbspropd 21039 phlpropd 21598 assapropd 21815 asclpropd 21840 psrplusgpropd 22154 lindfpropd 33347 |
| Copyright terms: Public domain | W3C validator |