MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oveqrspc2v Structured version   Visualization version   GIF version

Theorem oveqrspc2v 7162
Description: Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
oveqrspc2v.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
Assertion
Ref Expression
oveqrspc2v ((𝜑 ∧ (𝑋𝐴𝑌𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝑦,𝑌   𝑥,𝐺,𝑦   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem oveqrspc2v
StepHypRef Expression
1 oveqrspc2v.1 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
21ralrimivva 3156 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
3 oveq1 7142 . . . 4 (𝑥 = 𝑋 → (𝑥𝐹𝑦) = (𝑋𝐹𝑦))
4 oveq1 7142 . . . 4 (𝑥 = 𝑋 → (𝑥𝐺𝑦) = (𝑋𝐺𝑦))
53, 4eqeq12d 2814 . . 3 (𝑥 = 𝑋 → ((𝑥𝐹𝑦) = (𝑥𝐺𝑦) ↔ (𝑋𝐹𝑦) = (𝑋𝐺𝑦)))
6 oveq2 7143 . . . 4 (𝑦 = 𝑌 → (𝑋𝐹𝑦) = (𝑋𝐹𝑌))
7 oveq2 7143 . . . 4 (𝑦 = 𝑌 → (𝑋𝐺𝑦) = (𝑋𝐺𝑌))
86, 7eqeq12d 2814 . . 3 (𝑦 = 𝑌 → ((𝑋𝐹𝑦) = (𝑋𝐺𝑦) ↔ (𝑋𝐹𝑌) = (𝑋𝐺𝑌)))
95, 8rspc2v 3581 . 2 ((𝑋𝐴𝑌𝐵) → (∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌)))
102, 9mpan9 510 1 ((𝜑 ∧ (𝑋𝐴𝑌𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  (class class class)co 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ral 3111  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-ov 7138
This theorem is referenced by:  grpidpropd  17864  gsumpropd2lem  17881  mndpropd  17928  grpsubpropd2  18197  cmnpropd  18908  ringpropd  19328  lmodprop2d  19689  lsspropd  19782  lmhmpropd  19838  lbspropd  19864  phlpropd  20344  assapropd  20558  asclpropd  20583  psrplusgpropd  20865  lindfpropd  30996
  Copyright terms: Public domain W3C validator