MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oveqrspc2v Structured version   Visualization version   GIF version

Theorem oveqrspc2v 7459
Description: Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
oveqrspc2v.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
Assertion
Ref Expression
oveqrspc2v ((𝜑 ∧ (𝑋𝐴𝑌𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝑦,𝑌   𝑥,𝐺,𝑦   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem oveqrspc2v
StepHypRef Expression
1 oveqrspc2v.1 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
21ralrimivva 3201 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
3 oveq1 7439 . . . 4 (𝑥 = 𝑋 → (𝑥𝐹𝑦) = (𝑋𝐹𝑦))
4 oveq1 7439 . . . 4 (𝑥 = 𝑋 → (𝑥𝐺𝑦) = (𝑋𝐺𝑦))
53, 4eqeq12d 2752 . . 3 (𝑥 = 𝑋 → ((𝑥𝐹𝑦) = (𝑥𝐺𝑦) ↔ (𝑋𝐹𝑦) = (𝑋𝐺𝑦)))
6 oveq2 7440 . . . 4 (𝑦 = 𝑌 → (𝑋𝐹𝑦) = (𝑋𝐹𝑌))
7 oveq2 7440 . . . 4 (𝑦 = 𝑌 → (𝑋𝐺𝑦) = (𝑋𝐺𝑌))
86, 7eqeq12d 2752 . . 3 (𝑦 = 𝑌 → ((𝑋𝐹𝑦) = (𝑋𝐺𝑦) ↔ (𝑋𝐹𝑌) = (𝑋𝐺𝑌)))
95, 8rspc2v 3632 . 2 ((𝑋𝐴𝑌𝐵) → (∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌)))
102, 9mpan9 506 1 ((𝜑 ∧ (𝑋𝐴𝑌𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  (class class class)co 7432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-ov 7435
This theorem is referenced by:  grpidpropd  18676  gsumpropd2lem  18693  sgrppropd  18745  mndpropd  18773  grpsubpropd2  19065  cmnpropd  19810  rngpropd  20172  ringpropd  20286  lmodprop2d  20923  lsspropd  21017  lmhmpropd  21073  lbspropd  21099  phlpropd  21674  assapropd  21893  asclpropd  21918  psrplusgpropd  22238  lindfpropd  33411
  Copyright terms: Public domain W3C validator