MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oveqrspc2v Structured version   Visualization version   GIF version

Theorem oveqrspc2v 7437
Description: Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
oveqrspc2v.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
Assertion
Ref Expression
oveqrspc2v ((𝜑 ∧ (𝑋𝐴𝑌𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝑦,𝑌   𝑥,𝐺,𝑦   𝑥,𝑋,𝑦
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem oveqrspc2v
StepHypRef Expression
1 oveqrspc2v.1 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
21ralrimivva 3188 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
3 oveq1 7417 . . . 4 (𝑥 = 𝑋 → (𝑥𝐹𝑦) = (𝑋𝐹𝑦))
4 oveq1 7417 . . . 4 (𝑥 = 𝑋 → (𝑥𝐺𝑦) = (𝑋𝐺𝑦))
53, 4eqeq12d 2752 . . 3 (𝑥 = 𝑋 → ((𝑥𝐹𝑦) = (𝑥𝐺𝑦) ↔ (𝑋𝐹𝑦) = (𝑋𝐺𝑦)))
6 oveq2 7418 . . . 4 (𝑦 = 𝑌 → (𝑋𝐹𝑦) = (𝑋𝐹𝑌))
7 oveq2 7418 . . . 4 (𝑦 = 𝑌 → (𝑋𝐺𝑦) = (𝑋𝐺𝑌))
86, 7eqeq12d 2752 . . 3 (𝑦 = 𝑌 → ((𝑋𝐹𝑦) = (𝑋𝐺𝑦) ↔ (𝑋𝐹𝑌) = (𝑋𝐺𝑌)))
95, 8rspc2v 3617 . 2 ((𝑋𝐴𝑌𝐵) → (∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌)))
102, 9mpan9 506 1 ((𝜑 ∧ (𝑋𝐴𝑌𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  (class class class)co 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413
This theorem is referenced by:  grpidpropd  18645  gsumpropd2lem  18662  sgrppropd  18714  mndpropd  18742  grpsubpropd2  19034  cmnpropd  19777  rngpropd  20139  ringpropd  20253  lmodprop2d  20886  lsspropd  20980  lmhmpropd  21036  lbspropd  21062  phlpropd  21620  assapropd  21837  asclpropd  21862  psrplusgpropd  22176  lindfpropd  33402
  Copyright terms: Public domain W3C validator