Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvcmn Structured version   Visualization version   GIF version

Theorem resvcmn 33306
Description: Scalar restriction preserves commutative monoids. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypothesis
Ref Expression
resvbas.1 𝐻 = (𝐺v 𝐴)
Assertion
Ref Expression
resvcmn (𝐴𝑉 → (𝐺 ∈ CMnd ↔ 𝐻 ∈ CMnd))

Proof of Theorem resvcmn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (𝐴𝑉 → (Base‘𝐺) = (Base‘𝐺))
2 resvbas.1 . . 3 𝐻 = (𝐺v 𝐴)
3 eqid 2729 . . 3 (Base‘𝐺) = (Base‘𝐺)
42, 3resvbas 33300 . 2 (𝐴𝑉 → (Base‘𝐺) = (Base‘𝐻))
5 eqid 2729 . . . 4 (+g𝐺) = (+g𝐺)
62, 5resvplusg 33301 . . 3 (𝐴𝑉 → (+g𝐺) = (+g𝐻))
76oveqdr 7397 . 2 ((𝐴𝑉 ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
81, 4, 7cmnpropd 19706 1 (𝐴𝑉 → (𝐺 ∈ CMnd ↔ 𝐻 ∈ CMnd))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17156  +gcplusg 17197  CMndccmn 19695  v cresv 33292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-plusg 17210  df-sca 17213  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-cmn 19697  df-resv 33293
This theorem is referenced by:  xrge0slmod  33313
  Copyright terms: Public domain W3C validator