Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtcnvNEW Structured version   Visualization version   GIF version

Theorem ordtcnvNEW 33917
Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.) (Revised by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
ordtcnvNEW (𝐾 ∈ Proset → (ordTop‘ ) = (ordTop‘ ))

Proof of Theorem ordtcnvNEW
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3454 . . . . . . . . . . . . 13 𝑦 ∈ V
2 vex 3454 . . . . . . . . . . . . 13 𝑥 ∈ V
31, 2brcnv 5849 . . . . . . . . . . . 12 (𝑦 𝑥𝑥 𝑦)
43a1i 11 . . . . . . . . . . 11 (𝐾 ∈ Proset → (𝑦 𝑥𝑥 𝑦))
54notbid 318 . . . . . . . . . 10 (𝐾 ∈ Proset → (¬ 𝑦 𝑥 ↔ ¬ 𝑥 𝑦))
65rabbidv 3416 . . . . . . . . 9 (𝐾 ∈ Proset → {𝑦𝐵 ∣ ¬ 𝑦 𝑥} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
76mpteq2dv 5204 . . . . . . . 8 (𝐾 ∈ Proset → (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
87rneqd 5905 . . . . . . 7 (𝐾 ∈ Proset → ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
92, 1brcnv 5849 . . . . . . . . . . . 12 (𝑥 𝑦𝑦 𝑥)
109a1i 11 . . . . . . . . . . 11 (𝐾 ∈ Proset → (𝑥 𝑦𝑦 𝑥))
1110notbid 318 . . . . . . . . . 10 (𝐾 ∈ Proset → (¬ 𝑥 𝑦 ↔ ¬ 𝑦 𝑥))
1211rabbidv 3416 . . . . . . . . 9 (𝐾 ∈ Proset → {𝑦𝐵 ∣ ¬ 𝑥 𝑦} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
1312mpteq2dv 5204 . . . . . . . 8 (𝐾 ∈ Proset → (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
1413rneqd 5905 . . . . . . 7 (𝐾 ∈ Proset → ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
158, 14uneq12d 4135 . . . . . 6 (𝐾 ∈ Proset → (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})))
16 uncom 4124 . . . . . 6 (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
1715, 16eqtrdi 2781 . . . . 5 (𝐾 ∈ Proset → (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))
1817uneq2d 4134 . . . 4 (𝐾 ∈ Proset → ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
1918fveq2d 6865 . . 3 (𝐾 ∈ Proset → (fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))) = (fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))))
2019fveq2d 6865 . 2 (𝐾 ∈ Proset → (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
21 eqid 2730 . . . 4 (ODual‘𝐾) = (ODual‘𝐾)
2221oduprs 18268 . . 3 (𝐾 ∈ Proset → (ODual‘𝐾) ∈ Proset )
23 ordtNEW.b . . . . 5 𝐵 = (Base‘𝐾)
2421, 23odubas 18259 . . . 4 𝐵 = (Base‘(ODual‘𝐾))
25 ordtNEW.l . . . . . 6 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
2625cnveqi 5841 . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
27 cnvin 6120 . . . . 5 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘𝐾) ∩ (𝐵 × 𝐵))
28 eqid 2730 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
2921, 28oduleval 18257 . . . . . 6 (le‘𝐾) = (le‘(ODual‘𝐾))
30 cnvxp 6133 . . . . . 6 (𝐵 × 𝐵) = (𝐵 × 𝐵)
3129, 30ineq12i 4184 . . . . 5 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵))
3226, 27, 313eqtri 2757 . . . 4 = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵))
33 eqid 2730 . . . 4 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
34 eqid 2730 . . . 4 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
3524, 32, 33, 34ordtprsval 33915 . . 3 ((ODual‘𝐾) ∈ Proset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
3622, 35syl 17 . 2 (𝐾 ∈ Proset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
37 eqid 2730 . . 3 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
38 eqid 2730 . . 3 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
3923, 25, 37, 38ordtprsval 33915 . 2 (𝐾 ∈ Proset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
4020, 36, 393eqtr4d 2775 1 (𝐾 ∈ Proset → (ordTop‘ ) = (ordTop‘ ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3408  cun 3915  cin 3916  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  ccnv 5640  ran crn 5642  cfv 6514  ficfi 9368  Basecbs 17186  lecple 17234  topGenctg 17407  ordTopcordt 17469  ODualcodu 18254   Proset cproset 18260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-dec 12657  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ple 17247  df-ordt 17471  df-odu 18255  df-proset 18262
This theorem is referenced by:  ordtrest2NEW  33920
  Copyright terms: Public domain W3C validator