Step | Hyp | Ref
| Expression |
1 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
2 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
3 | 1, 2 | brcnv 5791 |
. . . . . . . . . . . 12
⊢ (𝑦◡ ≤ 𝑥 ↔ 𝑥 ≤ 𝑦) |
4 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Proset → (𝑦◡ ≤ 𝑥 ↔ 𝑥 ≤ 𝑦)) |
5 | 4 | notbid 318 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Proset → (¬
𝑦◡ ≤ 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
6 | 5 | rabbidv 3414 |
. . . . . . . . 9
⊢ (𝐾 ∈ Proset → {𝑦 ∈ 𝐵 ∣ ¬ 𝑦◡
≤
𝑥} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) |
7 | 6 | mpteq2dv 5176 |
. . . . . . . 8
⊢ (𝐾 ∈ Proset → (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦◡
≤
𝑥}) = (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) |
8 | 7 | rneqd 5847 |
. . . . . . 7
⊢ (𝐾 ∈ Proset → ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦◡
≤
𝑥}) = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) |
9 | 2, 1 | brcnv 5791 |
. . . . . . . . . . . 12
⊢ (𝑥◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑥) |
10 | 9 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Proset → (𝑥◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑥)) |
11 | 10 | notbid 318 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Proset → (¬
𝑥◡ ≤ 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) |
12 | 11 | rabbidv 3414 |
. . . . . . . . 9
⊢ (𝐾 ∈ Proset → {𝑦 ∈ 𝐵 ∣ ¬ 𝑥◡
≤
𝑦} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) |
13 | 12 | mpteq2dv 5176 |
. . . . . . . 8
⊢ (𝐾 ∈ Proset → (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥◡
≤
𝑦}) = (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥})) |
14 | 13 | rneqd 5847 |
. . . . . . 7
⊢ (𝐾 ∈ Proset → ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥◡
≤
𝑦}) = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥})) |
15 | 8, 14 | uneq12d 4098 |
. . . . . 6
⊢ (𝐾 ∈ Proset → (ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦◡
≤
𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥◡
≤
𝑦})) = (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}))) |
16 | | uncom 4087 |
. . . . . 6
⊢ (ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥})) = (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) |
17 | 15, 16 | eqtrdi 2794 |
. . . . 5
⊢ (𝐾 ∈ Proset → (ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦◡
≤
𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥◡
≤
𝑦})) = (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))) |
18 | 17 | uneq2d 4097 |
. . . 4
⊢ (𝐾 ∈ Proset → ({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦◡
≤
𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥◡
≤
𝑦}))) = ({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) |
19 | 18 | fveq2d 6778 |
. . 3
⊢ (𝐾 ∈ Proset →
(fi‘({𝐵} ∪ (ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦◡
≤
𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥◡
≤
𝑦})))) = (fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))))) |
20 | 19 | fveq2d 6778 |
. 2
⊢ (𝐾 ∈ Proset →
(topGen‘(fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦◡
≤
𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥◡
≤
𝑦}))))) =
(topGen‘(fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))))) |
21 | | eqid 2738 |
. . . 4
⊢
(ODual‘𝐾) =
(ODual‘𝐾) |
22 | 21 | oduprs 31242 |
. . 3
⊢ (𝐾 ∈ Proset →
(ODual‘𝐾) ∈
Proset ) |
23 | | ordtNEW.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
24 | 21, 23 | odubas 18009 |
. . . 4
⊢ 𝐵 =
(Base‘(ODual‘𝐾)) |
25 | | ordtNEW.l |
. . . . . 6
⊢ ≤ =
((le‘𝐾) ∩ (𝐵 × 𝐵)) |
26 | 25 | cnveqi 5783 |
. . . . 5
⊢ ◡ ≤ = ◡((le‘𝐾) ∩ (𝐵 × 𝐵)) |
27 | | cnvin 6048 |
. . . . 5
⊢ ◡((le‘𝐾) ∩ (𝐵 × 𝐵)) = (◡(le‘𝐾) ∩ ◡(𝐵 × 𝐵)) |
28 | | eqid 2738 |
. . . . . . 7
⊢
(le‘𝐾) =
(le‘𝐾) |
29 | 21, 28 | oduleval 18007 |
. . . . . 6
⊢ ◡(le‘𝐾) = (le‘(ODual‘𝐾)) |
30 | | cnvxp 6060 |
. . . . . 6
⊢ ◡(𝐵 × 𝐵) = (𝐵 × 𝐵) |
31 | 29, 30 | ineq12i 4144 |
. . . . 5
⊢ (◡(le‘𝐾) ∩ ◡(𝐵 × 𝐵)) = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵)) |
32 | 26, 27, 31 | 3eqtri 2770 |
. . . 4
⊢ ◡ ≤ =
((le‘(ODual‘𝐾))
∩ (𝐵 × 𝐵)) |
33 | | eqid 2738 |
. . . 4
⊢ ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦◡
≤
𝑥}) = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦◡
≤
𝑥}) |
34 | | eqid 2738 |
. . . 4
⊢ ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥◡
≤
𝑦}) = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥◡
≤
𝑦}) |
35 | 24, 32, 33, 34 | ordtprsval 31868 |
. . 3
⊢
((ODual‘𝐾)
∈ Proset → (ordTop‘◡
≤ ) =
(topGen‘(fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦◡
≤
𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥◡
≤
𝑦})))))) |
36 | 22, 35 | syl 17 |
. 2
⊢ (𝐾 ∈ Proset →
(ordTop‘◡ ≤ ) =
(topGen‘(fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦◡
≤
𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥◡
≤
𝑦})))))) |
37 | | eqid 2738 |
. . 3
⊢ ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) |
38 | | eqid 2738 |
. . 3
⊢ ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) |
39 | 23, 25, 37, 38 | ordtprsval 31868 |
. 2
⊢ (𝐾 ∈ Proset →
(ordTop‘ ≤ ) =
(topGen‘(fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))))) |
40 | 20, 36, 39 | 3eqtr4d 2788 |
1
⊢ (𝐾 ∈ Proset →
(ordTop‘◡ ≤ ) = (ordTop‘
≤
)) |