Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtcnvNEW Structured version   Visualization version   GIF version

Theorem ordtcnvNEW 31062
Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.) (Revised by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
ordtcnvNEW (𝐾 ∈ Proset → (ordTop‘ ) = (ordTop‘ ))

Proof of Theorem ordtcnvNEW
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3495 . . . . . . . . . . . . 13 𝑦 ∈ V
2 vex 3495 . . . . . . . . . . . . 13 𝑥 ∈ V
31, 2brcnv 5746 . . . . . . . . . . . 12 (𝑦 𝑥𝑥 𝑦)
43a1i 11 . . . . . . . . . . 11 (𝐾 ∈ Proset → (𝑦 𝑥𝑥 𝑦))
54notbid 319 . . . . . . . . . 10 (𝐾 ∈ Proset → (¬ 𝑦 𝑥 ↔ ¬ 𝑥 𝑦))
65rabbidv 3478 . . . . . . . . 9 (𝐾 ∈ Proset → {𝑦𝐵 ∣ ¬ 𝑦 𝑥} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
76mpteq2dv 5153 . . . . . . . 8 (𝐾 ∈ Proset → (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
87rneqd 5801 . . . . . . 7 (𝐾 ∈ Proset → ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
92, 1brcnv 5746 . . . . . . . . . . . 12 (𝑥 𝑦𝑦 𝑥)
109a1i 11 . . . . . . . . . . 11 (𝐾 ∈ Proset → (𝑥 𝑦𝑦 𝑥))
1110notbid 319 . . . . . . . . . 10 (𝐾 ∈ Proset → (¬ 𝑥 𝑦 ↔ ¬ 𝑦 𝑥))
1211rabbidv 3478 . . . . . . . . 9 (𝐾 ∈ Proset → {𝑦𝐵 ∣ ¬ 𝑥 𝑦} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
1312mpteq2dv 5153 . . . . . . . 8 (𝐾 ∈ Proset → (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
1413rneqd 5801 . . . . . . 7 (𝐾 ∈ Proset → ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
158, 14uneq12d 4137 . . . . . 6 (𝐾 ∈ Proset → (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})))
16 uncom 4126 . . . . . 6 (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
1715, 16syl6eq 2869 . . . . 5 (𝐾 ∈ Proset → (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))
1817uneq2d 4136 . . . 4 (𝐾 ∈ Proset → ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
1918fveq2d 6667 . . 3 (𝐾 ∈ Proset → (fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))) = (fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))))
2019fveq2d 6667 . 2 (𝐾 ∈ Proset → (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
21 eqid 2818 . . . 4 (ODual‘𝐾) = (ODual‘𝐾)
2221oduprs 30570 . . 3 (𝐾 ∈ Proset → (ODual‘𝐾) ∈ Proset )
23 ordtNEW.b . . . . 5 𝐵 = (Base‘𝐾)
2421, 23odubas 17731 . . . 4 𝐵 = (Base‘(ODual‘𝐾))
25 ordtNEW.l . . . . . 6 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
2625cnveqi 5738 . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
27 cnvin 5996 . . . . 5 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘𝐾) ∩ (𝐵 × 𝐵))
28 eqid 2818 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
2921, 28oduleval 17729 . . . . . 6 (le‘𝐾) = (le‘(ODual‘𝐾))
30 cnvxp 6007 . . . . . 6 (𝐵 × 𝐵) = (𝐵 × 𝐵)
3129, 30ineq12i 4184 . . . . 5 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵))
3226, 27, 313eqtri 2845 . . . 4 = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵))
33 eqid 2818 . . . 4 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
34 eqid 2818 . . . 4 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
3524, 32, 33, 34ordtprsval 31060 . . 3 ((ODual‘𝐾) ∈ Proset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
3622, 35syl 17 . 2 (𝐾 ∈ Proset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
37 eqid 2818 . . 3 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
38 eqid 2818 . . 3 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
3923, 25, 37, 38ordtprsval 31060 . 2 (𝐾 ∈ Proset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
4020, 36, 393eqtr4d 2863 1 (𝐾 ∈ Proset → (ordTop‘ ) = (ordTop‘ ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207   = wceq 1528  wcel 2105  {crab 3139  cun 3931  cin 3932  {csn 4557   class class class wbr 5057  cmpt 5137   × cxp 5546  ccnv 5547  ran crn 5549  cfv 6348  ficfi 8862  Basecbs 16471  lecple 16560  topGenctg 16699  ordTopcordt 16760   Proset cproset 17524  ODualcodu 17726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-dec 12087  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ple 16573  df-ordt 16762  df-proset 17526  df-odu 17727
This theorem is referenced by:  ordtrest2NEW  31065
  Copyright terms: Public domain W3C validator