Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtcnvNEW Structured version   Visualization version   GIF version

Theorem ordtcnvNEW 33866
Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.) (Revised by Thierry Arnoux, 13-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
ordtcnvNEW (𝐾 ∈ Proset → (ordTop‘ ) = (ordTop‘ ))

Proof of Theorem ordtcnvNEW
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . . . . . . . . . 13 𝑦 ∈ V
2 vex 3492 . . . . . . . . . . . . 13 𝑥 ∈ V
31, 2brcnv 5907 . . . . . . . . . . . 12 (𝑦 𝑥𝑥 𝑦)
43a1i 11 . . . . . . . . . . 11 (𝐾 ∈ Proset → (𝑦 𝑥𝑥 𝑦))
54notbid 318 . . . . . . . . . 10 (𝐾 ∈ Proset → (¬ 𝑦 𝑥 ↔ ¬ 𝑥 𝑦))
65rabbidv 3451 . . . . . . . . 9 (𝐾 ∈ Proset → {𝑦𝐵 ∣ ¬ 𝑦 𝑥} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
76mpteq2dv 5268 . . . . . . . 8 (𝐾 ∈ Proset → (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
87rneqd 5963 . . . . . . 7 (𝐾 ∈ Proset → ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
92, 1brcnv 5907 . . . . . . . . . . . 12 (𝑥 𝑦𝑦 𝑥)
109a1i 11 . . . . . . . . . . 11 (𝐾 ∈ Proset → (𝑥 𝑦𝑦 𝑥))
1110notbid 318 . . . . . . . . . 10 (𝐾 ∈ Proset → (¬ 𝑥 𝑦 ↔ ¬ 𝑦 𝑥))
1211rabbidv 3451 . . . . . . . . 9 (𝐾 ∈ Proset → {𝑦𝐵 ∣ ¬ 𝑥 𝑦} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
1312mpteq2dv 5268 . . . . . . . 8 (𝐾 ∈ Proset → (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
1413rneqd 5963 . . . . . . 7 (𝐾 ∈ Proset → ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
158, 14uneq12d 4192 . . . . . 6 (𝐾 ∈ Proset → (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})))
16 uncom 4181 . . . . . 6 (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
1715, 16eqtrdi 2796 . . . . 5 (𝐾 ∈ Proset → (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})) = (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))
1817uneq2d 4191 . . . 4 (𝐾 ∈ Proset → ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))) = ({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))
1918fveq2d 6924 . . 3 (𝐾 ∈ Proset → (fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))) = (fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})))))
2019fveq2d 6924 . 2 (𝐾 ∈ Proset → (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
21 eqid 2740 . . . 4 (ODual‘𝐾) = (ODual‘𝐾)
2221oduprs 32937 . . 3 (𝐾 ∈ Proset → (ODual‘𝐾) ∈ Proset )
23 ordtNEW.b . . . . 5 𝐵 = (Base‘𝐾)
2421, 23odubas 18361 . . . 4 𝐵 = (Base‘(ODual‘𝐾))
25 ordtNEW.l . . . . . 6 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
2625cnveqi 5899 . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
27 cnvin 6176 . . . . 5 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘𝐾) ∩ (𝐵 × 𝐵))
28 eqid 2740 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
2921, 28oduleval 18359 . . . . . 6 (le‘𝐾) = (le‘(ODual‘𝐾))
30 cnvxp 6188 . . . . . 6 (𝐵 × 𝐵) = (𝐵 × 𝐵)
3129, 30ineq12i 4239 . . . . 5 ((le‘𝐾) ∩ (𝐵 × 𝐵)) = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵))
3226, 27, 313eqtri 2772 . . . 4 = ((le‘(ODual‘𝐾)) ∩ (𝐵 × 𝐵))
33 eqid 2740 . . . 4 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
34 eqid 2740 . . . 4 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
3524, 32, 33, 34ordtprsval 33864 . . 3 ((ODual‘𝐾) ∈ Proset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
3622, 35syl 17 . 2 (𝐾 ∈ Proset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
37 eqid 2740 . . 3 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
38 eqid 2740 . . 3 ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
3923, 25, 37, 38ordtprsval 33864 . 2 (𝐾 ∈ Proset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))))))
4020, 36, 393eqtr4d 2790 1 (𝐾 ∈ Proset → (ordTop‘ ) = (ordTop‘ ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2108  {crab 3443  cun 3974  cin 3975  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  ccnv 5699  ran crn 5701  cfv 6573  ficfi 9479  Basecbs 17258  lecple 17318  topGenctg 17497  ordTopcordt 17559  ODualcodu 18356   Proset cproset 18363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-dec 12759  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ple 17331  df-ordt 17561  df-odu 18357  df-proset 18365
This theorem is referenced by:  ordtrest2NEW  33869
  Copyright terms: Public domain W3C validator