![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dminxp | Structured version Visualization version GIF version |
Description: Two ways to express totality of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
dminxp | ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5855 | . . . 4 ⊢ dom (𝐶 ∩ (𝐴 × 𝐵)) = ran ◡(𝐶 ∩ (𝐴 × 𝐵)) | |
2 | cnvin 6101 | . . . . . 6 ⊢ ◡(𝐶 ∩ (𝐴 × 𝐵)) = (◡𝐶 ∩ ◡(𝐴 × 𝐵)) | |
3 | cnvxp 6113 | . . . . . . 7 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
4 | 3 | ineq2i 4173 | . . . . . 6 ⊢ (◡𝐶 ∩ ◡(𝐴 × 𝐵)) = (◡𝐶 ∩ (𝐵 × 𝐴)) |
5 | 2, 4 | eqtri 2761 | . . . . 5 ⊢ ◡(𝐶 ∩ (𝐴 × 𝐵)) = (◡𝐶 ∩ (𝐵 × 𝐴)) |
6 | 5 | rneqi 5896 | . . . 4 ⊢ ran ◡(𝐶 ∩ (𝐴 × 𝐵)) = ran (◡𝐶 ∩ (𝐵 × 𝐴)) |
7 | 1, 6 | eqtri 2761 | . . 3 ⊢ dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (◡𝐶 ∩ (𝐵 × 𝐴)) |
8 | 7 | eqeq1i 2738 | . 2 ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ran (◡𝐶 ∩ (𝐵 × 𝐴)) = 𝐴) |
9 | rninxp 6135 | . 2 ⊢ (ran (◡𝐶 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦◡𝐶𝑥) | |
10 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
11 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | 10, 11 | brcnv 5842 | . . . 4 ⊢ (𝑦◡𝐶𝑥 ↔ 𝑥𝐶𝑦) |
13 | 12 | rexbii 3094 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝑦◡𝐶𝑥 ↔ ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
14 | 13 | ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦◡𝐶𝑥 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
15 | 8, 9, 14 | 3bitri 297 | 1 ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∀wral 3061 ∃wrex 3070 ∩ cin 3913 class class class wbr 5109 × cxp 5635 ◡ccnv 5636 dom cdm 5637 ran crn 5638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-br 5110 df-opab 5172 df-xp 5643 df-rel 5644 df-cnv 5645 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 |
This theorem is referenced by: trust 23604 onsupmaxb 41620 |
Copyright terms: Public domain | W3C validator |