MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dminxp Structured version   Visualization version   GIF version

Theorem dminxp 6156
Description: Two ways to express totality of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
dminxp (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dminxp
StepHypRef Expression
1 dfdm4 5862 . . . 4 dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐴 × 𝐵))
2 cnvin 6120 . . . . . 6 (𝐶 ∩ (𝐴 × 𝐵)) = (𝐶(𝐴 × 𝐵))
3 cnvxp 6133 . . . . . . 7 (𝐴 × 𝐵) = (𝐵 × 𝐴)
43ineq2i 4183 . . . . . 6 (𝐶(𝐴 × 𝐵)) = (𝐶 ∩ (𝐵 × 𝐴))
52, 4eqtri 2753 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) = (𝐶 ∩ (𝐵 × 𝐴))
65rneqi 5904 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐵 × 𝐴))
71, 6eqtri 2753 . . 3 dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐵 × 𝐴))
87eqeq1i 2735 . 2 (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ran (𝐶 ∩ (𝐵 × 𝐴)) = 𝐴)
9 rninxp 6155 . 2 (ran (𝐶 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝐶𝑥)
10 vex 3454 . . . . 5 𝑦 ∈ V
11 vex 3454 . . . . 5 𝑥 ∈ V
1210, 11brcnv 5849 . . . 4 (𝑦𝐶𝑥𝑥𝐶𝑦)
1312rexbii 3077 . . 3 (∃𝑦𝐵 𝑦𝐶𝑥 ↔ ∃𝑦𝐵 𝑥𝐶𝑦)
1413ralbii 3076 . 2 (∀𝑥𝐴𝑦𝐵 𝑦𝐶𝑥 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
158, 9, 143bitri 297 1 (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wral 3045  wrex 3054  cin 3916   class class class wbr 5110   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654
This theorem is referenced by:  trust  24124  onsupmaxb  43235
  Copyright terms: Public domain W3C validator