![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dminxp | Structured version Visualization version GIF version |
Description: Two ways to express totality of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
dminxp | ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdm4 5920 | . . . 4 ⊢ dom (𝐶 ∩ (𝐴 × 𝐵)) = ran ◡(𝐶 ∩ (𝐴 × 𝐵)) | |
2 | cnvin 6176 | . . . . . 6 ⊢ ◡(𝐶 ∩ (𝐴 × 𝐵)) = (◡𝐶 ∩ ◡(𝐴 × 𝐵)) | |
3 | cnvxp 6188 | . . . . . . 7 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
4 | 3 | ineq2i 4238 | . . . . . 6 ⊢ (◡𝐶 ∩ ◡(𝐴 × 𝐵)) = (◡𝐶 ∩ (𝐵 × 𝐴)) |
5 | 2, 4 | eqtri 2768 | . . . . 5 ⊢ ◡(𝐶 ∩ (𝐴 × 𝐵)) = (◡𝐶 ∩ (𝐵 × 𝐴)) |
6 | 5 | rneqi 5962 | . . . 4 ⊢ ran ◡(𝐶 ∩ (𝐴 × 𝐵)) = ran (◡𝐶 ∩ (𝐵 × 𝐴)) |
7 | 1, 6 | eqtri 2768 | . . 3 ⊢ dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (◡𝐶 ∩ (𝐵 × 𝐴)) |
8 | 7 | eqeq1i 2745 | . 2 ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ran (◡𝐶 ∩ (𝐵 × 𝐴)) = 𝐴) |
9 | rninxp 6210 | . 2 ⊢ (ran (◡𝐶 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦◡𝐶𝑥) | |
10 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
11 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | 10, 11 | brcnv 5907 | . . . 4 ⊢ (𝑦◡𝐶𝑥 ↔ 𝑥𝐶𝑦) |
13 | 12 | rexbii 3100 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝑦◡𝐶𝑥 ↔ ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
14 | 13 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑦◡𝐶𝑥 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
15 | 8, 9, 14 | 3bitri 297 | 1 ⊢ (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥𝐶𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 class class class wbr 5166 × cxp 5698 ◡ccnv 5699 dom cdm 5700 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: trust 24259 onsupmaxb 43200 |
Copyright terms: Public domain | W3C validator |