MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dminxp Structured version   Visualization version   GIF version

Theorem dminxp 6184
Description: Two ways to express totality of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
dminxp (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dminxp
StepHypRef Expression
1 dfdm4 5898 . . . 4 dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐴 × 𝐵))
2 cnvin 6149 . . . . . 6 (𝐶 ∩ (𝐴 × 𝐵)) = (𝐶(𝐴 × 𝐵))
3 cnvxp 6161 . . . . . . 7 (𝐴 × 𝐵) = (𝐵 × 𝐴)
43ineq2i 4209 . . . . . 6 (𝐶(𝐴 × 𝐵)) = (𝐶 ∩ (𝐵 × 𝐴))
52, 4eqtri 2756 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) = (𝐶 ∩ (𝐵 × 𝐴))
65rneqi 5939 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐵 × 𝐴))
71, 6eqtri 2756 . . 3 dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐵 × 𝐴))
87eqeq1i 2733 . 2 (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ran (𝐶 ∩ (𝐵 × 𝐴)) = 𝐴)
9 rninxp 6183 . 2 (ran (𝐶 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝐶𝑥)
10 vex 3475 . . . . 5 𝑦 ∈ V
11 vex 3475 . . . . 5 𝑥 ∈ V
1210, 11brcnv 5885 . . . 4 (𝑦𝐶𝑥𝑥𝐶𝑦)
1312rexbii 3091 . . 3 (∃𝑦𝐵 𝑦𝐶𝑥 ↔ ∃𝑦𝐵 𝑥𝐶𝑦)
1413ralbii 3090 . 2 (∀𝑥𝐴𝑦𝐵 𝑦𝐶𝑥 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
158, 9, 143bitri 297 1 (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wral 3058  wrex 3067  cin 3946   class class class wbr 5148   × cxp 5676  ccnv 5677  dom cdm 5678  ran crn 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-xp 5684  df-rel 5685  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691
This theorem is referenced by:  trust  24147  onsupmaxb  42667
  Copyright terms: Public domain W3C validator