MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustexsym Structured version   Visualization version   GIF version

Theorem ustexsym 23348
Description: In an uniform structure, for any entourage 𝑉, there exists a smaller symmetrical entourage. (Contributed by Thierry Arnoux, 4-Jan-2018.)
Assertion
Ref Expression
ustexsym ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
Distinct variable groups:   𝑤,𝑈   𝑤,𝑉
Allowed substitution hint:   𝑋(𝑤)

Proof of Theorem ustexsym
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplll 771 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑈 ∈ (UnifOn‘𝑋))
2 ustinvel 23342 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → 𝑥𝑈)
32ad4ant13 747 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥𝑈)
4 simplr 765 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥𝑈)
5 ustincl 23340 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈𝑥𝑈) → (𝑥𝑥) ∈ 𝑈)
61, 3, 4, 5syl3anc 1369 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) ∈ 𝑈)
7 ustrel 23344 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → Rel 𝑥)
8 dfrel2 6089 . . . . . . 7 (Rel 𝑥𝑥 = 𝑥)
97, 8sylib 217 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → 𝑥 = 𝑥)
109ineq1d 4150 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → (𝑥𝑥) = (𝑥𝑥))
11 cnvin 6045 . . . . 5 (𝑥𝑥) = (𝑥𝑥)
12 incom 4139 . . . . 5 (𝑥𝑥) = (𝑥𝑥)
1310, 11, 123eqtr4g 2804 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → (𝑥𝑥) = (𝑥𝑥))
1413ad4ant13 747 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) = (𝑥𝑥))
15 inss2 4168 . . . 4 (𝑥𝑥) ⊆ 𝑥
16 ustssco 23347 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → 𝑥 ⊆ (𝑥𝑥))
1716ad4ant13 747 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥 ⊆ (𝑥𝑥))
18 simpr 484 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) ⊆ 𝑉)
1917, 18sstrd 3935 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥𝑉)
2015, 19sstrid 3936 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) ⊆ 𝑉)
21 cnveq 5779 . . . . . 6 (𝑤 = (𝑥𝑥) → 𝑤 = (𝑥𝑥))
22 id 22 . . . . . 6 (𝑤 = (𝑥𝑥) → 𝑤 = (𝑥𝑥))
2321, 22eqeq12d 2755 . . . . 5 (𝑤 = (𝑥𝑥) → (𝑤 = 𝑤(𝑥𝑥) = (𝑥𝑥)))
24 sseq1 3950 . . . . 5 (𝑤 = (𝑥𝑥) → (𝑤𝑉 ↔ (𝑥𝑥) ⊆ 𝑉))
2523, 24anbi12d 630 . . . 4 (𝑤 = (𝑥𝑥) → ((𝑤 = 𝑤𝑤𝑉) ↔ ((𝑥𝑥) = (𝑥𝑥) ∧ (𝑥𝑥) ⊆ 𝑉)))
2625rspcev 3560 . . 3 (((𝑥𝑥) ∈ 𝑈 ∧ ((𝑥𝑥) = (𝑥𝑥) ∧ (𝑥𝑥) ⊆ 𝑉)) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
276, 14, 20, 26syl12anc 833 . 2 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
28 ustexhalf 23343 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑥𝑈 (𝑥𝑥) ⊆ 𝑉)
2927, 28r19.29a 3219 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wrex 3066  cin 3890  wss 3891  ccnv 5587  ccom 5592  Rel wrel 5593  cfv 6430  UnifOncust 23332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-iota 6388  df-fun 6432  df-fv 6438  df-ust 23333
This theorem is referenced by:  ustex2sym  23349  neipcfilu  23429
  Copyright terms: Public domain W3C validator