Step | Hyp | Ref
| Expression |
1 | | simplll 771 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → 𝑈 ∈ (UnifOn‘𝑋)) |
2 | | ustinvel 23342 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → ◡𝑥 ∈ 𝑈) |
3 | 2 | ad4ant13 747 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → ◡𝑥 ∈ 𝑈) |
4 | | simplr 765 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → 𝑥 ∈ 𝑈) |
5 | | ustincl 23340 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ◡𝑥 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) → (◡𝑥 ∩ 𝑥) ∈ 𝑈) |
6 | 1, 3, 4, 5 | syl3anc 1369 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → (◡𝑥 ∩ 𝑥) ∈ 𝑈) |
7 | | ustrel 23344 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → Rel 𝑥) |
8 | | dfrel2 6089 |
. . . . . . 7
⊢ (Rel
𝑥 ↔ ◡◡𝑥 = 𝑥) |
9 | 7, 8 | sylib 217 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → ◡◡𝑥 = 𝑥) |
10 | 9 | ineq1d 4150 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → (◡◡𝑥 ∩ ◡𝑥) = (𝑥 ∩ ◡𝑥)) |
11 | | cnvin 6045 |
. . . . 5
⊢ ◡(◡𝑥 ∩ 𝑥) = (◡◡𝑥 ∩ ◡𝑥) |
12 | | incom 4139 |
. . . . 5
⊢ (◡𝑥 ∩ 𝑥) = (𝑥 ∩ ◡𝑥) |
13 | 10, 11, 12 | 3eqtr4g 2804 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → ◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥)) |
14 | 13 | ad4ant13 747 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → ◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥)) |
15 | | inss2 4168 |
. . . 4
⊢ (◡𝑥 ∩ 𝑥) ⊆ 𝑥 |
16 | | ustssco 23347 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → 𝑥 ⊆ (𝑥 ∘ 𝑥)) |
17 | 16 | ad4ant13 747 |
. . . . 5
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → 𝑥 ⊆ (𝑥 ∘ 𝑥)) |
18 | | simpr 484 |
. . . . 5
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → (𝑥 ∘ 𝑥) ⊆ 𝑉) |
19 | 17, 18 | sstrd 3935 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → 𝑥 ⊆ 𝑉) |
20 | 15, 19 | sstrid 3936 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → (◡𝑥 ∩ 𝑥) ⊆ 𝑉) |
21 | | cnveq 5779 |
. . . . . 6
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → ◡𝑤 = ◡(◡𝑥 ∩ 𝑥)) |
22 | | id 22 |
. . . . . 6
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → 𝑤 = (◡𝑥 ∩ 𝑥)) |
23 | 21, 22 | eqeq12d 2755 |
. . . . 5
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → (◡𝑤 = 𝑤 ↔ ◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥))) |
24 | | sseq1 3950 |
. . . . 5
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → (𝑤 ⊆ 𝑉 ↔ (◡𝑥 ∩ 𝑥) ⊆ 𝑉)) |
25 | 23, 24 | anbi12d 630 |
. . . 4
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → ((◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉) ↔ (◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥) ∧ (◡𝑥 ∩ 𝑥) ⊆ 𝑉))) |
26 | 25 | rspcev 3560 |
. . 3
⊢ (((◡𝑥 ∩ 𝑥) ∈ 𝑈 ∧ (◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥) ∧ (◡𝑥 ∩ 𝑥) ⊆ 𝑉)) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉)) |
27 | 6, 14, 20, 26 | syl12anc 833 |
. 2
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉)) |
28 | | ustexhalf 23343 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 (𝑥 ∘ 𝑥) ⊆ 𝑉) |
29 | 27, 28 | r19.29a 3219 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉)) |