Step | Hyp | Ref
| Expression |
1 | | simplll 774 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → 𝑈 ∈ (UnifOn‘𝑋)) |
2 | | ustinvel 22923 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → ◡𝑥 ∈ 𝑈) |
3 | 2 | ad4ant13 750 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → ◡𝑥 ∈ 𝑈) |
4 | | simplr 768 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → 𝑥 ∈ 𝑈) |
5 | | ustincl 22921 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ◡𝑥 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) → (◡𝑥 ∩ 𝑥) ∈ 𝑈) |
6 | 1, 3, 4, 5 | syl3anc 1368 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → (◡𝑥 ∩ 𝑥) ∈ 𝑈) |
7 | | ustrel 22925 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → Rel 𝑥) |
8 | | dfrel2 6023 |
. . . . . . 7
⊢ (Rel
𝑥 ↔ ◡◡𝑥 = 𝑥) |
9 | 7, 8 | sylib 221 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → ◡◡𝑥 = 𝑥) |
10 | 9 | ineq1d 4118 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → (◡◡𝑥 ∩ ◡𝑥) = (𝑥 ∩ ◡𝑥)) |
11 | | cnvin 5980 |
. . . . 5
⊢ ◡(◡𝑥 ∩ 𝑥) = (◡◡𝑥 ∩ ◡𝑥) |
12 | | incom 4108 |
. . . . 5
⊢ (◡𝑥 ∩ 𝑥) = (𝑥 ∩ ◡𝑥) |
13 | 10, 11, 12 | 3eqtr4g 2818 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → ◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥)) |
14 | 13 | ad4ant13 750 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → ◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥)) |
15 | | inss2 4136 |
. . . 4
⊢ (◡𝑥 ∩ 𝑥) ⊆ 𝑥 |
16 | | ustssco 22928 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → 𝑥 ⊆ (𝑥 ∘ 𝑥)) |
17 | 16 | ad4ant13 750 |
. . . . 5
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → 𝑥 ⊆ (𝑥 ∘ 𝑥)) |
18 | | simpr 488 |
. . . . 5
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → (𝑥 ∘ 𝑥) ⊆ 𝑉) |
19 | 17, 18 | sstrd 3904 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → 𝑥 ⊆ 𝑉) |
20 | 15, 19 | sstrid 3905 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → (◡𝑥 ∩ 𝑥) ⊆ 𝑉) |
21 | | cnveq 5719 |
. . . . . 6
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → ◡𝑤 = ◡(◡𝑥 ∩ 𝑥)) |
22 | | id 22 |
. . . . . 6
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → 𝑤 = (◡𝑥 ∩ 𝑥)) |
23 | 21, 22 | eqeq12d 2774 |
. . . . 5
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → (◡𝑤 = 𝑤 ↔ ◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥))) |
24 | | sseq1 3919 |
. . . . 5
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → (𝑤 ⊆ 𝑉 ↔ (◡𝑥 ∩ 𝑥) ⊆ 𝑉)) |
25 | 23, 24 | anbi12d 633 |
. . . 4
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → ((◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉) ↔ (◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥) ∧ (◡𝑥 ∩ 𝑥) ⊆ 𝑉))) |
26 | 25 | rspcev 3543 |
. . 3
⊢ (((◡𝑥 ∩ 𝑥) ∈ 𝑈 ∧ (◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥) ∧ (◡𝑥 ∩ 𝑥) ⊆ 𝑉)) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉)) |
27 | 6, 14, 20, 26 | syl12anc 835 |
. 2
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉)) |
28 | | ustexhalf 22924 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 (𝑥 ∘ 𝑥) ⊆ 𝑉) |
29 | 27, 28 | r19.29a 3213 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉)) |