MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustexsym Structured version   Visualization version   GIF version

Theorem ustexsym 24132
Description: In an uniform structure, for any entourage 𝑉, there exists a smaller symmetrical entourage. (Contributed by Thierry Arnoux, 4-Jan-2018.)
Assertion
Ref Expression
ustexsym ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
Distinct variable groups:   𝑤,𝑈   𝑤,𝑉
Allowed substitution hint:   𝑋(𝑤)

Proof of Theorem ustexsym
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplll 774 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑈 ∈ (UnifOn‘𝑋))
2 ustinvel 24126 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → 𝑥𝑈)
32ad4ant13 751 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥𝑈)
4 simplr 768 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥𝑈)
5 ustincl 24124 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈𝑥𝑈) → (𝑥𝑥) ∈ 𝑈)
61, 3, 4, 5syl3anc 1373 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) ∈ 𝑈)
7 ustrel 24128 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → Rel 𝑥)
8 dfrel2 6136 . . . . . . 7 (Rel 𝑥𝑥 = 𝑥)
97, 8sylib 218 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → 𝑥 = 𝑥)
109ineq1d 4169 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → (𝑥𝑥) = (𝑥𝑥))
11 cnvin 6091 . . . . 5 (𝑥𝑥) = (𝑥𝑥)
12 incom 4159 . . . . 5 (𝑥𝑥) = (𝑥𝑥)
1310, 11, 123eqtr4g 2791 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → (𝑥𝑥) = (𝑥𝑥))
1413ad4ant13 751 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) = (𝑥𝑥))
15 inss2 4188 . . . 4 (𝑥𝑥) ⊆ 𝑥
16 ustssco 24131 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → 𝑥 ⊆ (𝑥𝑥))
1716ad4ant13 751 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥 ⊆ (𝑥𝑥))
18 simpr 484 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) ⊆ 𝑉)
1917, 18sstrd 3945 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥𝑉)
2015, 19sstrid 3946 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) ⊆ 𝑉)
21 cnveq 5813 . . . . . 6 (𝑤 = (𝑥𝑥) → 𝑤 = (𝑥𝑥))
22 id 22 . . . . . 6 (𝑤 = (𝑥𝑥) → 𝑤 = (𝑥𝑥))
2321, 22eqeq12d 2747 . . . . 5 (𝑤 = (𝑥𝑥) → (𝑤 = 𝑤(𝑥𝑥) = (𝑥𝑥)))
24 sseq1 3960 . . . . 5 (𝑤 = (𝑥𝑥) → (𝑤𝑉 ↔ (𝑥𝑥) ⊆ 𝑉))
2523, 24anbi12d 632 . . . 4 (𝑤 = (𝑥𝑥) → ((𝑤 = 𝑤𝑤𝑉) ↔ ((𝑥𝑥) = (𝑥𝑥) ∧ (𝑥𝑥) ⊆ 𝑉)))
2625rspcev 3577 . . 3 (((𝑥𝑥) ∈ 𝑈 ∧ ((𝑥𝑥) = (𝑥𝑥) ∧ (𝑥𝑥) ⊆ 𝑉)) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
276, 14, 20, 26syl12anc 836 . 2 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
28 ustexhalf 24127 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑥𝑈 (𝑥𝑥) ⊆ 𝑉)
2927, 28r19.29a 3140 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  cin 3901  wss 3902  ccnv 5615  ccom 5620  Rel wrel 5621  cfv 6481  UnifOncust 24116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-ust 24117
This theorem is referenced by:  ustex2sym  24133  neipcfilu  24211
  Copyright terms: Public domain W3C validator