MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustexsym Structured version   Visualization version   GIF version

Theorem ustexsym 23416
Description: In an uniform structure, for any entourage 𝑉, there exists a smaller symmetrical entourage. (Contributed by Thierry Arnoux, 4-Jan-2018.)
Assertion
Ref Expression
ustexsym ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
Distinct variable groups:   𝑤,𝑈   𝑤,𝑉
Allowed substitution hint:   𝑋(𝑤)

Proof of Theorem ustexsym
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplll 773 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑈 ∈ (UnifOn‘𝑋))
2 ustinvel 23410 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → 𝑥𝑈)
32ad4ant13 749 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥𝑈)
4 simplr 767 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥𝑈)
5 ustincl 23408 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈𝑥𝑈) → (𝑥𝑥) ∈ 𝑈)
61, 3, 4, 5syl3anc 1371 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) ∈ 𝑈)
7 ustrel 23412 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → Rel 𝑥)
8 dfrel2 6107 . . . . . . 7 (Rel 𝑥𝑥 = 𝑥)
97, 8sylib 217 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → 𝑥 = 𝑥)
109ineq1d 4151 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → (𝑥𝑥) = (𝑥𝑥))
11 cnvin 6063 . . . . 5 (𝑥𝑥) = (𝑥𝑥)
12 incom 4141 . . . . 5 (𝑥𝑥) = (𝑥𝑥)
1310, 11, 123eqtr4g 2801 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → (𝑥𝑥) = (𝑥𝑥))
1413ad4ant13 749 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) = (𝑥𝑥))
15 inss2 4169 . . . 4 (𝑥𝑥) ⊆ 𝑥
16 ustssco 23415 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → 𝑥 ⊆ (𝑥𝑥))
1716ad4ant13 749 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥 ⊆ (𝑥𝑥))
18 simpr 486 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) ⊆ 𝑉)
1917, 18sstrd 3936 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥𝑉)
2015, 19sstrid 3937 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) ⊆ 𝑉)
21 cnveq 5795 . . . . . 6 (𝑤 = (𝑥𝑥) → 𝑤 = (𝑥𝑥))
22 id 22 . . . . . 6 (𝑤 = (𝑥𝑥) → 𝑤 = (𝑥𝑥))
2321, 22eqeq12d 2752 . . . . 5 (𝑤 = (𝑥𝑥) → (𝑤 = 𝑤(𝑥𝑥) = (𝑥𝑥)))
24 sseq1 3951 . . . . 5 (𝑤 = (𝑥𝑥) → (𝑤𝑉 ↔ (𝑥𝑥) ⊆ 𝑉))
2523, 24anbi12d 632 . . . 4 (𝑤 = (𝑥𝑥) → ((𝑤 = 𝑤𝑤𝑉) ↔ ((𝑥𝑥) = (𝑥𝑥) ∧ (𝑥𝑥) ⊆ 𝑉)))
2625rspcev 3566 . . 3 (((𝑥𝑥) ∈ 𝑈 ∧ ((𝑥𝑥) = (𝑥𝑥) ∧ (𝑥𝑥) ⊆ 𝑉)) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
276, 14, 20, 26syl12anc 835 . 2 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
28 ustexhalf 23411 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑥𝑈 (𝑥𝑥) ⊆ 𝑉)
2927, 28r19.29a 3156 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wrex 3071  cin 3891  wss 3892  ccnv 5599  ccom 5604  Rel wrel 5605  cfv 6458  UnifOncust 23400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-iota 6410  df-fun 6460  df-fv 6466  df-ust 23401
This theorem is referenced by:  ustex2sym  23417  neipcfilu  23497
  Copyright terms: Public domain W3C validator