| Step | Hyp | Ref
| Expression |
| 1 | | simplll 774 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → 𝑈 ∈ (UnifOn‘𝑋)) |
| 2 | | ustinvel 24148 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → ◡𝑥 ∈ 𝑈) |
| 3 | 2 | ad4ant13 751 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → ◡𝑥 ∈ 𝑈) |
| 4 | | simplr 768 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → 𝑥 ∈ 𝑈) |
| 5 | | ustincl 24146 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ ◡𝑥 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈) → (◡𝑥 ∩ 𝑥) ∈ 𝑈) |
| 6 | 1, 3, 4, 5 | syl3anc 1373 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → (◡𝑥 ∩ 𝑥) ∈ 𝑈) |
| 7 | | ustrel 24150 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → Rel 𝑥) |
| 8 | | dfrel2 6178 |
. . . . . . 7
⊢ (Rel
𝑥 ↔ ◡◡𝑥 = 𝑥) |
| 9 | 7, 8 | sylib 218 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → ◡◡𝑥 = 𝑥) |
| 10 | 9 | ineq1d 4194 |
. . . . 5
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → (◡◡𝑥 ∩ ◡𝑥) = (𝑥 ∩ ◡𝑥)) |
| 11 | | cnvin 6133 |
. . . . 5
⊢ ◡(◡𝑥 ∩ 𝑥) = (◡◡𝑥 ∩ ◡𝑥) |
| 12 | | incom 4184 |
. . . . 5
⊢ (◡𝑥 ∩ 𝑥) = (𝑥 ∩ ◡𝑥) |
| 13 | 10, 11, 12 | 3eqtr4g 2795 |
. . . 4
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → ◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥)) |
| 14 | 13 | ad4ant13 751 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → ◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥)) |
| 15 | | inss2 4213 |
. . . 4
⊢ (◡𝑥 ∩ 𝑥) ⊆ 𝑥 |
| 16 | | ustssco 24153 |
. . . . . 6
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥 ∈ 𝑈) → 𝑥 ⊆ (𝑥 ∘ 𝑥)) |
| 17 | 16 | ad4ant13 751 |
. . . . 5
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → 𝑥 ⊆ (𝑥 ∘ 𝑥)) |
| 18 | | simpr 484 |
. . . . 5
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → (𝑥 ∘ 𝑥) ⊆ 𝑉) |
| 19 | 17, 18 | sstrd 3969 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → 𝑥 ⊆ 𝑉) |
| 20 | 15, 19 | sstrid 3970 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → (◡𝑥 ∩ 𝑥) ⊆ 𝑉) |
| 21 | | cnveq 5853 |
. . . . . 6
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → ◡𝑤 = ◡(◡𝑥 ∩ 𝑥)) |
| 22 | | id 22 |
. . . . . 6
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → 𝑤 = (◡𝑥 ∩ 𝑥)) |
| 23 | 21, 22 | eqeq12d 2751 |
. . . . 5
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → (◡𝑤 = 𝑤 ↔ ◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥))) |
| 24 | | sseq1 3984 |
. . . . 5
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → (𝑤 ⊆ 𝑉 ↔ (◡𝑥 ∩ 𝑥) ⊆ 𝑉)) |
| 25 | 23, 24 | anbi12d 632 |
. . . 4
⊢ (𝑤 = (◡𝑥 ∩ 𝑥) → ((◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉) ↔ (◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥) ∧ (◡𝑥 ∩ 𝑥) ⊆ 𝑉))) |
| 26 | 25 | rspcev 3601 |
. . 3
⊢ (((◡𝑥 ∩ 𝑥) ∈ 𝑈 ∧ (◡(◡𝑥 ∩ 𝑥) = (◡𝑥 ∩ 𝑥) ∧ (◡𝑥 ∩ 𝑥) ⊆ 𝑉)) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉)) |
| 27 | 6, 14, 20, 26 | syl12anc 836 |
. 2
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) ∧ 𝑥 ∈ 𝑈) ∧ (𝑥 ∘ 𝑥) ⊆ 𝑉) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉)) |
| 28 | | ustexhalf 24149 |
. 2
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑥 ∈ 𝑈 (𝑥 ∘ 𝑥) ⊆ 𝑉) |
| 29 | 27, 28 | r19.29a 3148 |
1
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (◡𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉)) |