MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustexsym Structured version   Visualization version   GIF version

Theorem ustexsym 24154
Description: In an uniform structure, for any entourage 𝑉, there exists a smaller symmetrical entourage. (Contributed by Thierry Arnoux, 4-Jan-2018.)
Assertion
Ref Expression
ustexsym ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
Distinct variable groups:   𝑤,𝑈   𝑤,𝑉
Allowed substitution hint:   𝑋(𝑤)

Proof of Theorem ustexsym
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplll 774 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑈 ∈ (UnifOn‘𝑋))
2 ustinvel 24148 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → 𝑥𝑈)
32ad4ant13 751 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥𝑈)
4 simplr 768 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥𝑈)
5 ustincl 24146 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈𝑥𝑈) → (𝑥𝑥) ∈ 𝑈)
61, 3, 4, 5syl3anc 1373 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) ∈ 𝑈)
7 ustrel 24150 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → Rel 𝑥)
8 dfrel2 6178 . . . . . . 7 (Rel 𝑥𝑥 = 𝑥)
97, 8sylib 218 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → 𝑥 = 𝑥)
109ineq1d 4194 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → (𝑥𝑥) = (𝑥𝑥))
11 cnvin 6133 . . . . 5 (𝑥𝑥) = (𝑥𝑥)
12 incom 4184 . . . . 5 (𝑥𝑥) = (𝑥𝑥)
1310, 11, 123eqtr4g 2795 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → (𝑥𝑥) = (𝑥𝑥))
1413ad4ant13 751 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) = (𝑥𝑥))
15 inss2 4213 . . . 4 (𝑥𝑥) ⊆ 𝑥
16 ustssco 24153 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑥𝑈) → 𝑥 ⊆ (𝑥𝑥))
1716ad4ant13 751 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥 ⊆ (𝑥𝑥))
18 simpr 484 . . . . 5 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) ⊆ 𝑉)
1917, 18sstrd 3969 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → 𝑥𝑉)
2015, 19sstrid 3970 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → (𝑥𝑥) ⊆ 𝑉)
21 cnveq 5853 . . . . . 6 (𝑤 = (𝑥𝑥) → 𝑤 = (𝑥𝑥))
22 id 22 . . . . . 6 (𝑤 = (𝑥𝑥) → 𝑤 = (𝑥𝑥))
2321, 22eqeq12d 2751 . . . . 5 (𝑤 = (𝑥𝑥) → (𝑤 = 𝑤(𝑥𝑥) = (𝑥𝑥)))
24 sseq1 3984 . . . . 5 (𝑤 = (𝑥𝑥) → (𝑤𝑉 ↔ (𝑥𝑥) ⊆ 𝑉))
2523, 24anbi12d 632 . . . 4 (𝑤 = (𝑥𝑥) → ((𝑤 = 𝑤𝑤𝑉) ↔ ((𝑥𝑥) = (𝑥𝑥) ∧ (𝑥𝑥) ⊆ 𝑉)))
2625rspcev 3601 . . 3 (((𝑥𝑥) ∈ 𝑈 ∧ ((𝑥𝑥) = (𝑥𝑥) ∧ (𝑥𝑥) ⊆ 𝑉)) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
276, 14, 20, 26syl12anc 836 . 2 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) ∧ 𝑥𝑈) ∧ (𝑥𝑥) ⊆ 𝑉) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
28 ustexhalf 24149 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑥𝑈 (𝑥𝑥) ⊆ 𝑉)
2927, 28r19.29a 3148 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ∃𝑤𝑈 (𝑤 = 𝑤𝑤𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3060  cin 3925  wss 3926  ccnv 5653  ccom 5658  Rel wrel 5659  cfv 6531  UnifOncust 24138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fv 6539  df-ust 24139
This theorem is referenced by:  ustex2sym  24155  neipcfilu  24234
  Copyright terms: Public domain W3C validator