MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjdm Structured version   Visualization version   GIF version

Theorem pjdm 21750
Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval.v 𝑉 = (Base‘𝑊)
pjfval.l 𝐿 = (LSubSp‘𝑊)
pjfval.o = (ocv‘𝑊)
pjfval.p 𝑃 = (proj1𝑊)
pjfval.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjdm (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇𝑃( 𝑇)):𝑉𝑉))

Proof of Theorem pjdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑥 = 𝑇𝑥 = 𝑇)
2 fveq2 6920 . . . . 5 (𝑥 = 𝑇 → ( 𝑥) = ( 𝑇))
31, 2oveq12d 7466 . . . 4 (𝑥 = 𝑇 → (𝑥𝑃( 𝑥)) = (𝑇𝑃( 𝑇)))
43eleq1d 2829 . . 3 (𝑥 = 𝑇 → ((𝑥𝑃( 𝑥)) ∈ (𝑉m 𝑉) ↔ (𝑇𝑃( 𝑇)) ∈ (𝑉m 𝑉)))
5 pjfval.v . . . . 5 𝑉 = (Base‘𝑊)
65fvexi 6934 . . . 4 𝑉 ∈ V
76, 6elmap 8929 . . 3 ((𝑇𝑃( 𝑇)) ∈ (𝑉m 𝑉) ↔ (𝑇𝑃( 𝑇)):𝑉𝑉)
84, 7bitrdi 287 . 2 (𝑥 = 𝑇 → ((𝑥𝑃( 𝑥)) ∈ (𝑉m 𝑉) ↔ (𝑇𝑃( 𝑇)):𝑉𝑉))
9 cnvin 6176 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
10 cnvxp 6188 . . . . . . . 8 (V × (𝑉m 𝑉)) = ((𝑉m 𝑉) × V)
1110ineq2i 4238 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ ((𝑉m 𝑉) × V))
129, 11eqtri 2768 . . . . . 6 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ ((𝑉m 𝑉) × V))
13 pjfval.l . . . . . . . 8 𝐿 = (LSubSp‘𝑊)
14 pjfval.o . . . . . . . 8 = (ocv‘𝑊)
15 pjfval.p . . . . . . . 8 𝑃 = (proj1𝑊)
16 pjfval.k . . . . . . . 8 𝐾 = (proj‘𝑊)
175, 13, 14, 15, 16pjfval 21749 . . . . . . 7 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
1817cnveqi 5899 . . . . . 6 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
19 df-res 5712 . . . . . 6 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉m 𝑉)) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ ((𝑉m 𝑉) × V))
2012, 18, 193eqtr4i 2778 . . . . 5 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉m 𝑉))
2120rneqi 5962 . . . 4 ran 𝐾 = ran ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉m 𝑉))
22 dfdm4 5920 . . . 4 dom 𝐾 = ran 𝐾
23 df-ima 5713 . . . 4 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) “ (𝑉m 𝑉)) = ran ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉m 𝑉))
2421, 22, 233eqtr4i 2778 . . 3 dom 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) “ (𝑉m 𝑉))
25 eqid 2740 . . . 4 (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = (𝑥𝐿 ↦ (𝑥𝑃( 𝑥)))
2625mptpreima 6269 . . 3 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) “ (𝑉m 𝑉)) = {𝑥𝐿 ∣ (𝑥𝑃( 𝑥)) ∈ (𝑉m 𝑉)}
2724, 26eqtri 2768 . 2 dom 𝐾 = {𝑥𝐿 ∣ (𝑥𝑃( 𝑥)) ∈ (𝑉m 𝑉)}
288, 27elrab2 3711 1 (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇𝑃( 𝑇)):𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cin 3975  cmpt 5249   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Basecbs 17258  proj1cpj1 19677  LSubSpclss 20952  ocvcocv 21701  projcpj 21743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-pj 21746
This theorem is referenced by:  pjfval2  21752  pjdm2  21754  pjf  21756
  Copyright terms: Public domain W3C validator