MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjdm Structured version   Visualization version   GIF version

Theorem pjdm 20914
Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval.v 𝑉 = (Base‘𝑊)
pjfval.l 𝐿 = (LSubSp‘𝑊)
pjfval.o = (ocv‘𝑊)
pjfval.p 𝑃 = (proj1𝑊)
pjfval.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjdm (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇𝑃( 𝑇)):𝑉𝑉))

Proof of Theorem pjdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑥 = 𝑇𝑥 = 𝑇)
2 fveq2 6774 . . . . 5 (𝑥 = 𝑇 → ( 𝑥) = ( 𝑇))
31, 2oveq12d 7293 . . . 4 (𝑥 = 𝑇 → (𝑥𝑃( 𝑥)) = (𝑇𝑃( 𝑇)))
43eleq1d 2823 . . 3 (𝑥 = 𝑇 → ((𝑥𝑃( 𝑥)) ∈ (𝑉m 𝑉) ↔ (𝑇𝑃( 𝑇)) ∈ (𝑉m 𝑉)))
5 pjfval.v . . . . 5 𝑉 = (Base‘𝑊)
65fvexi 6788 . . . 4 𝑉 ∈ V
76, 6elmap 8659 . . 3 ((𝑇𝑃( 𝑇)) ∈ (𝑉m 𝑉) ↔ (𝑇𝑃( 𝑇)):𝑉𝑉)
84, 7bitrdi 287 . 2 (𝑥 = 𝑇 → ((𝑥𝑃( 𝑥)) ∈ (𝑉m 𝑉) ↔ (𝑇𝑃( 𝑇)):𝑉𝑉))
9 cnvin 6048 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
10 cnvxp 6060 . . . . . . . 8 (V × (𝑉m 𝑉)) = ((𝑉m 𝑉) × V)
1110ineq2i 4143 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ ((𝑉m 𝑉) × V))
129, 11eqtri 2766 . . . . . 6 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ ((𝑉m 𝑉) × V))
13 pjfval.l . . . . . . . 8 𝐿 = (LSubSp‘𝑊)
14 pjfval.o . . . . . . . 8 = (ocv‘𝑊)
15 pjfval.p . . . . . . . 8 𝑃 = (proj1𝑊)
16 pjfval.k . . . . . . . 8 𝐾 = (proj‘𝑊)
175, 13, 14, 15, 16pjfval 20913 . . . . . . 7 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
1817cnveqi 5783 . . . . . 6 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
19 df-res 5601 . . . . . 6 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉m 𝑉)) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ ((𝑉m 𝑉) × V))
2012, 18, 193eqtr4i 2776 . . . . 5 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉m 𝑉))
2120rneqi 5846 . . . 4 ran 𝐾 = ran ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉m 𝑉))
22 dfdm4 5804 . . . 4 dom 𝐾 = ran 𝐾
23 df-ima 5602 . . . 4 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) “ (𝑉m 𝑉)) = ran ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉m 𝑉))
2421, 22, 233eqtr4i 2776 . . 3 dom 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) “ (𝑉m 𝑉))
25 eqid 2738 . . . 4 (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = (𝑥𝐿 ↦ (𝑥𝑃( 𝑥)))
2625mptpreima 6141 . . 3 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) “ (𝑉m 𝑉)) = {𝑥𝐿 ∣ (𝑥𝑃( 𝑥)) ∈ (𝑉m 𝑉)}
2724, 26eqtri 2766 . 2 dom 𝐾 = {𝑥𝐿 ∣ (𝑥𝑃( 𝑥)) ∈ (𝑉m 𝑉)}
288, 27elrab2 3627 1 (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇𝑃( 𝑇)):𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cin 3886  cmpt 5157   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Basecbs 16912  proj1cpj1 19240  LSubSpclss 20193  ocvcocv 20865  projcpj 20907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-pj 20910
This theorem is referenced by:  pjfval2  20916  pjdm2  20918  pjf  20920
  Copyright terms: Public domain W3C validator