MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjdm Structured version   Visualization version   GIF version

Theorem pjdm 20669
Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval.v 𝑉 = (Base‘𝑊)
pjfval.l 𝐿 = (LSubSp‘𝑊)
pjfval.o = (ocv‘𝑊)
pjfval.p 𝑃 = (proj1𝑊)
pjfval.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjdm (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇𝑃( 𝑇)):𝑉𝑉))

Proof of Theorem pjdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑥 = 𝑇𝑥 = 𝑇)
2 fveq2 6717 . . . . 5 (𝑥 = 𝑇 → ( 𝑥) = ( 𝑇))
31, 2oveq12d 7231 . . . 4 (𝑥 = 𝑇 → (𝑥𝑃( 𝑥)) = (𝑇𝑃( 𝑇)))
43eleq1d 2822 . . 3 (𝑥 = 𝑇 → ((𝑥𝑃( 𝑥)) ∈ (𝑉m 𝑉) ↔ (𝑇𝑃( 𝑇)) ∈ (𝑉m 𝑉)))
5 pjfval.v . . . . 5 𝑉 = (Base‘𝑊)
65fvexi 6731 . . . 4 𝑉 ∈ V
76, 6elmap 8552 . . 3 ((𝑇𝑃( 𝑇)) ∈ (𝑉m 𝑉) ↔ (𝑇𝑃( 𝑇)):𝑉𝑉)
84, 7bitrdi 290 . 2 (𝑥 = 𝑇 → ((𝑥𝑃( 𝑥)) ∈ (𝑉m 𝑉) ↔ (𝑇𝑃( 𝑇)):𝑉𝑉))
9 cnvin 6008 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
10 cnvxp 6020 . . . . . . . 8 (V × (𝑉m 𝑉)) = ((𝑉m 𝑉) × V)
1110ineq2i 4124 . . . . . . 7 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ ((𝑉m 𝑉) × V))
129, 11eqtri 2765 . . . . . 6 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉))) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ ((𝑉m 𝑉) × V))
13 pjfval.l . . . . . . . 8 𝐿 = (LSubSp‘𝑊)
14 pjfval.o . . . . . . . 8 = (ocv‘𝑊)
15 pjfval.p . . . . . . . 8 𝑃 = (proj1𝑊)
16 pjfval.k . . . . . . . 8 𝐾 = (proj‘𝑊)
175, 13, 14, 15, 16pjfval 20668 . . . . . . 7 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
1817cnveqi 5743 . . . . . 6 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ (V × (𝑉m 𝑉)))
19 df-res 5563 . . . . . 6 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉m 𝑉)) = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ∩ ((𝑉m 𝑉) × V))
2012, 18, 193eqtr4i 2775 . . . . 5 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉m 𝑉))
2120rneqi 5806 . . . 4 ran 𝐾 = ran ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉m 𝑉))
22 dfdm4 5764 . . . 4 dom 𝐾 = ran 𝐾
23 df-ima 5564 . . . 4 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) “ (𝑉m 𝑉)) = ran ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) ↾ (𝑉m 𝑉))
2421, 22, 233eqtr4i 2775 . . 3 dom 𝐾 = ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) “ (𝑉m 𝑉))
25 eqid 2737 . . . 4 (𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) = (𝑥𝐿 ↦ (𝑥𝑃( 𝑥)))
2625mptpreima 6101 . . 3 ((𝑥𝐿 ↦ (𝑥𝑃( 𝑥))) “ (𝑉m 𝑉)) = {𝑥𝐿 ∣ (𝑥𝑃( 𝑥)) ∈ (𝑉m 𝑉)}
2724, 26eqtri 2765 . 2 dom 𝐾 = {𝑥𝐿 ∣ (𝑥𝑃( 𝑥)) ∈ (𝑉m 𝑉)}
288, 27elrab2 3605 1 (𝑇 ∈ dom 𝐾 ↔ (𝑇𝐿 ∧ (𝑇𝑃( 𝑇)):𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wcel 2110  {crab 3065  Vcvv 3408  cin 3865  cmpt 5135   × cxp 5549  ccnv 5550  dom cdm 5551  ran crn 5552  cres 5553  cima 5554  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  Basecbs 16760  proj1cpj1 19024  LSubSpclss 19968  ocvcocv 20622  projcpj 20662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-map 8510  df-pj 20665
This theorem is referenced by:  pjfval2  20671  pjdm2  20673  pjf  20675
  Copyright terms: Public domain W3C validator