| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlcocnv | Structured version Visualization version GIF version | ||
| Description: Swap the arguments of the trace of a composition with converse. (Contributed by NM, 1-Jul-2013.) |
| Ref | Expression |
|---|---|
| trlcocnv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trlcocnv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| trlcocnv.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trlcocnv | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ ◡𝐺)) = (𝑅‘(𝐺 ∘ ◡𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | trlcocnv.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | trlcocnv.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | 2, 3 | ltrncnv 40244 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → ◡𝐺 ∈ 𝑇) |
| 5 | 4 | 3adant2 1131 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ◡𝐺 ∈ 𝑇) |
| 6 | 2, 3 | ltrnco 40817 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ◡𝐺 ∈ 𝑇) → (𝐹 ∘ ◡𝐺) ∈ 𝑇) |
| 7 | 5, 6 | syld3an3 1411 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ ◡𝐺) ∈ 𝑇) |
| 8 | trlcocnv.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 9 | 2, 3, 8 | trlcnv 40263 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∘ ◡𝐺) ∈ 𝑇) → (𝑅‘◡(𝐹 ∘ ◡𝐺)) = (𝑅‘(𝐹 ∘ ◡𝐺))) |
| 10 | 1, 7, 9 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘◡(𝐹 ∘ ◡𝐺)) = (𝑅‘(𝐹 ∘ ◡𝐺))) |
| 11 | cnvco 5824 | . . . 4 ⊢ ◡(𝐹 ∘ ◡𝐺) = (◡◡𝐺 ∘ ◡𝐹) | |
| 12 | cocnvcnv1 6205 | . . . 4 ⊢ (◡◡𝐺 ∘ ◡𝐹) = (𝐺 ∘ ◡𝐹) | |
| 13 | 11, 12 | eqtri 2754 | . . 3 ⊢ ◡(𝐹 ∘ ◡𝐺) = (𝐺 ∘ ◡𝐹) |
| 14 | 13 | fveq2i 6825 | . 2 ⊢ (𝑅‘◡(𝐹 ∘ ◡𝐺)) = (𝑅‘(𝐺 ∘ ◡𝐹)) |
| 15 | 10, 14 | eqtr3di 2781 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ ◡𝐺)) = (𝑅‘(𝐺 ∘ ◡𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ◡ccnv 5613 ∘ ccom 5618 ‘cfv 6481 HLchlt 39448 LHypclh 40082 LTrncltrn 40199 trLctrl 40256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-riotaBAD 39051 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-undef 8203 df-map 8752 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39274 df-ol 39276 df-oml 39277 df-covers 39364 df-ats 39365 df-atl 39396 df-cvlat 39420 df-hlat 39449 df-llines 39596 df-lplanes 39597 df-lvols 39598 df-lines 39599 df-psubsp 39601 df-pmap 39602 df-padd 39894 df-lhyp 40086 df-laut 40087 df-ldil 40202 df-ltrn 40203 df-trl 40257 |
| This theorem is referenced by: cdlemk9bN 40938 cdlemk14 40952 cdlemk21N 40971 cdlemk20 40972 cdlemk22 40991 cdlemkfid1N 41019 |
| Copyright terms: Public domain | W3C validator |