![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlcocnv | Structured version Visualization version GIF version |
Description: Swap the arguments of the trace of a composition with converse. (Contributed by NM, 1-Jul-2013.) |
Ref | Expression |
---|---|
trlcocnv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlcocnv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlcocnv.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlcocnv | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ ◡𝐺)) = (𝑅‘(𝐺 ∘ ◡𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | trlcocnv.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | trlcocnv.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | 2, 3 | ltrncnv 40103 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → ◡𝐺 ∈ 𝑇) |
5 | 4 | 3adant2 1131 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ◡𝐺 ∈ 𝑇) |
6 | 2, 3 | ltrnco 40676 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ◡𝐺 ∈ 𝑇) → (𝐹 ∘ ◡𝐺) ∈ 𝑇) |
7 | 5, 6 | syld3an3 1409 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ ◡𝐺) ∈ 𝑇) |
8 | trlcocnv.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
9 | 2, 3, 8 | trlcnv 40122 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∘ ◡𝐺) ∈ 𝑇) → (𝑅‘◡(𝐹 ∘ ◡𝐺)) = (𝑅‘(𝐹 ∘ ◡𝐺))) |
10 | 1, 7, 9 | syl2anc 583 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘◡(𝐹 ∘ ◡𝐺)) = (𝑅‘(𝐹 ∘ ◡𝐺))) |
11 | cnvco 5910 | . . . 4 ⊢ ◡(𝐹 ∘ ◡𝐺) = (◡◡𝐺 ∘ ◡𝐹) | |
12 | cocnvcnv1 6288 | . . . 4 ⊢ (◡◡𝐺 ∘ ◡𝐹) = (𝐺 ∘ ◡𝐹) | |
13 | 11, 12 | eqtri 2768 | . . 3 ⊢ ◡(𝐹 ∘ ◡𝐺) = (𝐺 ∘ ◡𝐹) |
14 | 13 | fveq2i 6923 | . 2 ⊢ (𝑅‘◡(𝐹 ∘ ◡𝐺)) = (𝑅‘(𝐺 ∘ ◡𝐹)) |
15 | 10, 14 | eqtr3di 2795 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ ◡𝐺)) = (𝑅‘(𝐺 ∘ ◡𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ◡ccnv 5699 ∘ ccom 5704 ‘cfv 6573 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 trLctrl 40115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-undef 8314 df-map 8886 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 |
This theorem is referenced by: cdlemk9bN 40797 cdlemk14 40811 cdlemk21N 40830 cdlemk20 40831 cdlemk22 40850 cdlemkfid1N 40878 |
Copyright terms: Public domain | W3C validator |