Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcocnv Structured version   Visualization version   GIF version

Theorem trlcocnv 39895
Description: Swap the arguments of the trace of a composition with converse. (Contributed by NM, 1-Jul-2013.)
Hypotheses
Ref Expression
trlcocnv.h 𝐻 = (LHyp‘𝐾)
trlcocnv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcocnv.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcocnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) = (𝑅‘(𝐺𝐹)))

Proof of Theorem trlcocnv
StepHypRef Expression
1 simp1 1135 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 trlcocnv.h . . . . . 6 𝐻 = (LHyp‘𝐾)
3 trlcocnv.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
42, 3ltrncnv 39321 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺𝑇)
543adant2 1130 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺𝑇)
62, 3ltrnco 39894 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
75, 6syld3an3 1408 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
8 trlcocnv.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
92, 3, 8trlcnv 39340 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → (𝑅(𝐹𝐺)) = (𝑅‘(𝐹𝐺)))
101, 7, 9syl2anc 583 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅(𝐹𝐺)) = (𝑅‘(𝐹𝐺)))
11 cnvco 5886 . . . 4 (𝐹𝐺) = (𝐺𝐹)
12 cocnvcnv1 6257 . . . 4 (𝐺𝐹) = (𝐺𝐹)
1311, 12eqtri 2759 . . 3 (𝐹𝐺) = (𝐺𝐹)
1413fveq2i 6895 . 2 (𝑅(𝐹𝐺)) = (𝑅‘(𝐺𝐹))
1510, 14eqtr3di 2786 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) = (𝑅‘(𝐺𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  ccnv 5676  ccom 5681  cfv 6544  HLchlt 38524  LHypclh 39159  LTrncltrn 39276  trLctrl 39333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-riotaBAD 38127
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-undef 8261  df-map 8825  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-llines 38673  df-lplanes 38674  df-lvols 38675  df-lines 38676  df-psubsp 38678  df-pmap 38679  df-padd 38971  df-lhyp 39163  df-laut 39164  df-ldil 39279  df-ltrn 39280  df-trl 39334
This theorem is referenced by:  cdlemk9bN  40015  cdlemk14  40029  cdlemk21N  40048  cdlemk20  40049  cdlemk22  40068  cdlemkfid1N  40096
  Copyright terms: Public domain W3C validator