Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcocnv Structured version   Visualization version   GIF version

Theorem trlcocnv 40685
Description: Swap the arguments of the trace of a composition with converse. (Contributed by NM, 1-Jul-2013.)
Hypotheses
Ref Expression
trlcocnv.h 𝐻 = (LHyp‘𝐾)
trlcocnv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcocnv.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcocnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) = (𝑅‘(𝐺𝐹)))

Proof of Theorem trlcocnv
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 trlcocnv.h . . . . . 6 𝐻 = (LHyp‘𝐾)
3 trlcocnv.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
42, 3ltrncnv 40111 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺𝑇)
543adant2 1131 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺𝑇)
62, 3ltrnco 40684 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
75, 6syld3an3 1411 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
8 trlcocnv.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
92, 3, 8trlcnv 40130 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → (𝑅(𝐹𝐺)) = (𝑅‘(𝐹𝐺)))
101, 7, 9syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅(𝐹𝐺)) = (𝑅‘(𝐹𝐺)))
11 cnvco 5865 . . . 4 (𝐹𝐺) = (𝐺𝐹)
12 cocnvcnv1 6246 . . . 4 (𝐺𝐹) = (𝐺𝐹)
1311, 12eqtri 2758 . . 3 (𝐹𝐺) = (𝐺𝐹)
1413fveq2i 6878 . 2 (𝑅(𝐹𝐺)) = (𝑅‘(𝐺𝐹))
1510, 14eqtr3di 2785 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) = (𝑅‘(𝐺𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  ccnv 5653  ccom 5658  cfv 6530  HLchlt 39314  LHypclh 39949  LTrncltrn 40066  trLctrl 40123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-riotaBAD 38917
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-undef 8270  df-map 8840  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-p0 18433  df-p1 18434  df-lat 18440  df-clat 18507  df-oposet 39140  df-ol 39142  df-oml 39143  df-covers 39230  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315  df-llines 39463  df-lplanes 39464  df-lvols 39465  df-lines 39466  df-psubsp 39468  df-pmap 39469  df-padd 39761  df-lhyp 39953  df-laut 39954  df-ldil 40069  df-ltrn 40070  df-trl 40124
This theorem is referenced by:  cdlemk9bN  40805  cdlemk14  40819  cdlemk21N  40838  cdlemk20  40839  cdlemk22  40858  cdlemkfid1N  40886
  Copyright terms: Public domain W3C validator