Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcocnv Structured version   Visualization version   GIF version

Theorem trlcocnv 40818
Description: Swap the arguments of the trace of a composition with converse. (Contributed by NM, 1-Jul-2013.)
Hypotheses
Ref Expression
trlcocnv.h 𝐻 = (LHyp‘𝐾)
trlcocnv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcocnv.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcocnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) = (𝑅‘(𝐺𝐹)))

Proof of Theorem trlcocnv
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 trlcocnv.h . . . . . 6 𝐻 = (LHyp‘𝐾)
3 trlcocnv.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
42, 3ltrncnv 40244 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺𝑇)
543adant2 1131 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺𝑇)
62, 3ltrnco 40817 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
75, 6syld3an3 1411 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
8 trlcocnv.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
92, 3, 8trlcnv 40263 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → (𝑅(𝐹𝐺)) = (𝑅‘(𝐹𝐺)))
101, 7, 9syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅(𝐹𝐺)) = (𝑅‘(𝐹𝐺)))
11 cnvco 5824 . . . 4 (𝐹𝐺) = (𝐺𝐹)
12 cocnvcnv1 6205 . . . 4 (𝐺𝐹) = (𝐺𝐹)
1311, 12eqtri 2754 . . 3 (𝐹𝐺) = (𝐺𝐹)
1413fveq2i 6825 . 2 (𝑅(𝐹𝐺)) = (𝑅‘(𝐺𝐹))
1510, 14eqtr3di 2781 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) = (𝑅‘(𝐺𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  ccnv 5613  ccom 5618  cfv 6481  HLchlt 39448  LHypclh 40082  LTrncltrn 40199  trLctrl 40256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-riotaBAD 39051
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449  df-llines 39596  df-lplanes 39597  df-lvols 39598  df-lines 39599  df-psubsp 39601  df-pmap 39602  df-padd 39894  df-lhyp 40086  df-laut 40087  df-ldil 40202  df-ltrn 40203  df-trl 40257
This theorem is referenced by:  cdlemk9bN  40938  cdlemk14  40952  cdlemk21N  40971  cdlemk20  40972  cdlemk22  40991  cdlemkfid1N  41019
  Copyright terms: Public domain W3C validator