MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1val Structured version   Visualization version   GIF version

Theorem deg1val 25484
Description: Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
deg1leb.d 𝐷 = ( deg1𝑅)
deg1leb.p 𝑃 = (Poly1𝑅)
deg1leb.b 𝐵 = (Base‘𝑃)
deg1leb.y 0 = (0g𝑅)
deg1leb.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
deg1val (𝐹𝐵 → (𝐷𝐹) = sup((𝐴 supp 0 ), ℝ*, < ))

Proof of Theorem deg1val
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1leb.d . . . 4 𝐷 = ( deg1𝑅)
21deg1fval 25468 . . 3 𝐷 = (1o mDeg 𝑅)
3 eqid 2733 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
4 deg1leb.p . . . 4 𝑃 = (Poly1𝑅)
5 eqid 2733 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
6 deg1leb.b . . . 4 𝐵 = (Base‘𝑃)
74, 5, 6ply1bas 21589 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
8 deg1leb.y . . 3 0 = (0g𝑅)
9 psr1baslem 21579 . . 3 (ℕ0m 1o) = {𝑦 ∈ (ℕ0m 1o) ∣ (𝑦 “ ℕ) ∈ Fin}
10 tdeglem2 25449 . . 3 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0m 1o) ↦ (ℂfld Σg 𝑥))
112, 3, 7, 8, 9, 10mdegval 25451 . 2 (𝐹𝐵 → (𝐷𝐹) = sup(((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < ))
128fvexi 6860 . . . . . . . 8 0 ∈ V
13 suppimacnv 8109 . . . . . . . 8 ((𝐹𝐵0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
1412, 13mpan2 690 . . . . . . 7 (𝐹𝐵 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
1514imaeq2d 6017 . . . . . 6 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 “ (V ∖ { 0 }))))
16 imaco 6207 . . . . . 6 (((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) “ (V ∖ { 0 })) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 “ (V ∖ { 0 })))
1715, 16eqtr4di 2791 . . . . 5 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) “ (V ∖ { 0 })))
18 deg1leb.a . . . . . . . . 9 𝐴 = (coe1𝐹)
19 df1o2 8423 . . . . . . . . . 10 1o = {∅}
20 nn0ex 12427 . . . . . . . . . 10 0 ∈ V
21 0ex 5268 . . . . . . . . . 10 ∅ ∈ V
22 eqid 2733 . . . . . . . . . 10 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))
2319, 20, 21, 22mapsncnv 8837 . . . . . . . . 9 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))
2418, 6, 4, 23coe1fval2 21604 . . . . . . . 8 (𝐹𝐵𝐴 = (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))))
2524cnveqd 5835 . . . . . . 7 (𝐹𝐵𝐴 = (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))))
26 cnvco 5845 . . . . . . . 8 (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹)
27 cocnvcnv1 6213 . . . . . . . 8 ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹)
2826, 27eqtri 2761 . . . . . . 7 (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹)
2925, 28eqtr2di 2790 . . . . . 6 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) = 𝐴)
3029imaeq1d 6016 . . . . 5 (𝐹𝐵 → (((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) “ (V ∖ { 0 })) = (𝐴 “ (V ∖ { 0 })))
3117, 30eqtrd 2773 . . . 4 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (𝐴 “ (V ∖ { 0 })))
3218fvexi 6860 . . . . 5 𝐴 ∈ V
33 suppimacnv 8109 . . . . . 6 ((𝐴 ∈ V ∧ 0 ∈ V) → (𝐴 supp 0 ) = (𝐴 “ (V ∖ { 0 })))
3433eqcomd 2739 . . . . 5 ((𝐴 ∈ V ∧ 0 ∈ V) → (𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 ))
3532, 12, 34mp2an 691 . . . 4 (𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 )
3631, 35eqtrdi 2789 . . 3 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (𝐴 supp 0 ))
3736supeq1d 9390 . 2 (𝐹𝐵 → sup(((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < ) = sup((𝐴 supp 0 ), ℝ*, < ))
3811, 37eqtrd 2773 1 (𝐹𝐵 → (𝐷𝐹) = sup((𝐴 supp 0 ), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3447  cdif 3911  c0 4286  {csn 4590  cmpt 5192  ccnv 5636  cima 5640  ccom 5641  cfv 6500  (class class class)co 7361   supp csupp 8096  1oc1o 8409  m cmap 8771  supcsup 9384  *cxr 11196   < clt 11197  0cn0 12421  Basecbs 17091  0gc0g 17329   mPoly cmpl 21331  PwSer1cps1 21569  Poly1cpl1 21571  coe1cco1 21572   deg1 cdg1 25439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-addf 11138  ax-mulf 11139
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-of 7621  df-om 7807  df-1st 7925  df-2nd 7926  df-supp 8097  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fsupp 9312  df-sup 9386  df-oi 9454  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-dec 12627  df-uz 12772  df-fz 13434  df-fzo 13577  df-seq 13916  df-hash 14240  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-mulr 17155  df-starv 17156  df-sca 17157  df-vsca 17158  df-tset 17160  df-ple 17161  df-ds 17163  df-unif 17164  df-0g 17331  df-gsum 17332  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-grp 18759  df-mulg 18881  df-cntz 19105  df-cmn 19572  df-mgp 19905  df-ring 19974  df-cring 19975  df-cnfld 20820  df-psr 21334  df-mpl 21336  df-opsr 21338  df-psr1 21574  df-ply1 21576  df-coe1 21577  df-mdeg 25440  df-deg1 25441
This theorem is referenced by:  deg1mul3  25503  deg1mul3le  25504  ressdeg1  32331
  Copyright terms: Public domain W3C validator