MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1val Structured version   Visualization version   GIF version

Theorem deg1val 26135
Description: Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
deg1leb.d 𝐷 = (deg1𝑅)
deg1leb.p 𝑃 = (Poly1𝑅)
deg1leb.b 𝐵 = (Base‘𝑃)
deg1leb.y 0 = (0g𝑅)
deg1leb.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
deg1val (𝐹𝐵 → (𝐷𝐹) = sup((𝐴 supp 0 ), ℝ*, < ))

Proof of Theorem deg1val
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1leb.d . . . 4 𝐷 = (deg1𝑅)
21deg1fval 26119 . . 3 𝐷 = (1o mDeg 𝑅)
3 eqid 2737 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
4 deg1leb.p . . . 4 𝑃 = (Poly1𝑅)
5 deg1leb.b . . . 4 𝐵 = (Base‘𝑃)
64, 5ply1bas 22196 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
7 deg1leb.y . . 3 0 = (0g𝑅)
8 psr1baslem 22186 . . 3 (ℕ0m 1o) = {𝑦 ∈ (ℕ0m 1o) ∣ (𝑦 “ ℕ) ∈ Fin}
9 tdeglem2 26100 . . 3 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0m 1o) ↦ (ℂfld Σg 𝑥))
102, 3, 6, 7, 8, 9mdegval 26102 . 2 (𝐹𝐵 → (𝐷𝐹) = sup(((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < ))
117fvexi 6920 . . . . . . . 8 0 ∈ V
12 suppimacnv 8199 . . . . . . . 8 ((𝐹𝐵0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
1311, 12mpan2 691 . . . . . . 7 (𝐹𝐵 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
1413imaeq2d 6078 . . . . . 6 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 “ (V ∖ { 0 }))))
15 imaco 6271 . . . . . 6 (((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) “ (V ∖ { 0 })) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 “ (V ∖ { 0 })))
1614, 15eqtr4di 2795 . . . . 5 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) “ (V ∖ { 0 })))
17 deg1leb.a . . . . . . . . 9 𝐴 = (coe1𝐹)
18 df1o2 8513 . . . . . . . . . 10 1o = {∅}
19 nn0ex 12532 . . . . . . . . . 10 0 ∈ V
20 0ex 5307 . . . . . . . . . 10 ∅ ∈ V
21 eqid 2737 . . . . . . . . . 10 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))
2218, 19, 20, 21mapsncnv 8933 . . . . . . . . 9 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))
2317, 5, 4, 22coe1fval2 22212 . . . . . . . 8 (𝐹𝐵𝐴 = (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))))
2423cnveqd 5886 . . . . . . 7 (𝐹𝐵𝐴 = (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))))
25 cnvco 5896 . . . . . . . 8 (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹)
26 cocnvcnv1 6277 . . . . . . . 8 ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹)
2725, 26eqtri 2765 . . . . . . 7 (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹)
2824, 27eqtr2di 2794 . . . . . 6 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) = 𝐴)
2928imaeq1d 6077 . . . . 5 (𝐹𝐵 → (((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) “ (V ∖ { 0 })) = (𝐴 “ (V ∖ { 0 })))
3016, 29eqtrd 2777 . . . 4 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (𝐴 “ (V ∖ { 0 })))
3117fvexi 6920 . . . . 5 𝐴 ∈ V
32 suppimacnv 8199 . . . . . 6 ((𝐴 ∈ V ∧ 0 ∈ V) → (𝐴 supp 0 ) = (𝐴 “ (V ∖ { 0 })))
3332eqcomd 2743 . . . . 5 ((𝐴 ∈ V ∧ 0 ∈ V) → (𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 ))
3431, 11, 33mp2an 692 . . . 4 (𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 )
3530, 34eqtrdi 2793 . . 3 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (𝐴 supp 0 ))
3635supeq1d 9486 . 2 (𝐹𝐵 → sup(((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < ) = sup((𝐴 supp 0 ), ℝ*, < ))
3710, 36eqtrd 2777 1 (𝐹𝐵 → (𝐷𝐹) = sup((𝐴 supp 0 ), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948  c0 4333  {csn 4626  cmpt 5225  ccnv 5684  cima 5688  ccom 5689  cfv 6561  (class class class)co 7431   supp csupp 8185  1oc1o 8499  m cmap 8866  supcsup 9480  *cxr 11294   < clt 11295  0cn0 12526  Basecbs 17247  0gc0g 17484   mPoly cmpl 21926  Poly1cpl1 22178  coe1cco1 22179  deg1cdg1 26093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-mgp 20138  df-ring 20232  df-cring 20233  df-cnfld 21365  df-psr 21929  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-ply1 22183  df-coe1 22184  df-mdeg 26094  df-deg1 26095
This theorem is referenced by:  deg1mul3  26155  deg1mul3le  26156  ressdeg1  33591
  Copyright terms: Public domain W3C validator