MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1val Structured version   Visualization version   GIF version

Theorem deg1val 24686
Description: Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
deg1leb.d 𝐷 = ( deg1𝑅)
deg1leb.p 𝑃 = (Poly1𝑅)
deg1leb.b 𝐵 = (Base‘𝑃)
deg1leb.y 0 = (0g𝑅)
deg1leb.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
deg1val (𝐹𝐵 → (𝐷𝐹) = sup((𝐴 supp 0 ), ℝ*, < ))

Proof of Theorem deg1val
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1leb.d . . . 4 𝐷 = ( deg1𝑅)
21deg1fval 24670 . . 3 𝐷 = (1o mDeg 𝑅)
3 eqid 2824 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
4 deg1leb.p . . . 4 𝑃 = (Poly1𝑅)
5 eqid 2824 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
6 deg1leb.b . . . 4 𝐵 = (Base‘𝑃)
74, 5, 6ply1bas 20349 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
8 deg1leb.y . . 3 0 = (0g𝑅)
9 psr1baslem 20339 . . 3 (ℕ0m 1o) = {𝑦 ∈ (ℕ0m 1o) ∣ (𝑦 “ ℕ) ∈ Fin}
10 tdeglem2 24651 . . 3 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0m 1o) ↦ (ℂfld Σg 𝑥))
112, 3, 7, 8, 9, 10mdegval 24653 . 2 (𝐹𝐵 → (𝐷𝐹) = sup(((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < ))
128fvexi 6665 . . . . . . . 8 0 ∈ V
13 suppimacnv 7824 . . . . . . . 8 ((𝐹𝐵0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
1412, 13mpan2 690 . . . . . . 7 (𝐹𝐵 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
1514imaeq2d 5910 . . . . . 6 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 “ (V ∖ { 0 }))))
16 imaco 6085 . . . . . 6 (((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) “ (V ∖ { 0 })) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 “ (V ∖ { 0 })))
1715, 16syl6eqr 2877 . . . . 5 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) “ (V ∖ { 0 })))
18 deg1leb.a . . . . . . . . 9 𝐴 = (coe1𝐹)
19 df1o2 8099 . . . . . . . . . 10 1o = {∅}
20 nn0ex 11889 . . . . . . . . . 10 0 ∈ V
21 0ex 5192 . . . . . . . . . 10 ∅ ∈ V
22 eqid 2824 . . . . . . . . . 10 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))
2319, 20, 21, 22mapsncnv 8440 . . . . . . . . 9 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))
2418, 6, 4, 23coe1fval2 20364 . . . . . . . 8 (𝐹𝐵𝐴 = (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))))
2524cnveqd 5727 . . . . . . 7 (𝐹𝐵𝐴 = (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))))
26 cnvco 5737 . . . . . . . 8 (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹)
27 cocnvcnv1 6091 . . . . . . . 8 ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹)
2826, 27eqtri 2847 . . . . . . 7 (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))) = ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹)
2925, 28syl6req 2876 . . . . . 6 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) = 𝐴)
3029imaeq1d 5909 . . . . 5 (𝐹𝐵 → (((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) ∘ 𝐹) “ (V ∖ { 0 })) = (𝐴 “ (V ∖ { 0 })))
3117, 30eqtrd 2859 . . . 4 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (𝐴 “ (V ∖ { 0 })))
3218fvexi 6665 . . . . 5 𝐴 ∈ V
33 suppimacnv 7824 . . . . . 6 ((𝐴 ∈ V ∧ 0 ∈ V) → (𝐴 supp 0 ) = (𝐴 “ (V ∖ { 0 })))
3433eqcomd 2830 . . . . 5 ((𝐴 ∈ V ∧ 0 ∈ V) → (𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 ))
3532, 12, 34mp2an 691 . . . 4 (𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 )
3631, 35syl6eq 2875 . . 3 (𝐹𝐵 → ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (𝐴 supp 0 ))
3736supeq1d 8894 . 2 (𝐹𝐵 → sup(((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < ) = sup((𝐴 supp 0 ), ℝ*, < ))
3811, 37eqtrd 2859 1 (𝐹𝐵 → (𝐷𝐹) = sup((𝐴 supp 0 ), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3479  cdif 3915  c0 4274  {csn 4548  cmpt 5127  ccnv 5535  cima 5539  ccom 5540  cfv 6336  (class class class)co 7138   supp csupp 7813  1oc1o 8078  m cmap 8389  supcsup 8888  *cxr 10659   < clt 10660  0cn0 11883  Basecbs 16472  0gc0g 16702   mPoly cmpl 20119  PwSer1cps1 20329  Poly1cpl1 20331  coe1cco1 20332   deg1 cdg1 24644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-addf 10601  ax-mulf 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-of 7392  df-om 7564  df-1st 7672  df-2nd 7673  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-dec 12085  df-uz 12230  df-fz 12884  df-fzo 13027  df-seq 13363  df-hash 13685  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-starv 16569  df-sca 16570  df-vsca 16571  df-tset 16573  df-ple 16574  df-ds 16576  df-unif 16577  df-0g 16704  df-gsum 16705  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-grp 18095  df-mulg 18214  df-cntz 18436  df-cmn 18897  df-mgp 19229  df-ring 19288  df-cring 19289  df-psr 20122  df-mpl 20124  df-opsr 20126  df-psr1 20334  df-ply1 20336  df-coe1 20337  df-cnfld 20532  df-mdeg 24645  df-deg1 24646
This theorem is referenced by:  deg1mul3  24705  deg1mul3le  24706
  Copyright terms: Public domain W3C validator