| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1val | Structured version Visualization version GIF version | ||
| Description: Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Jul-2019.) |
| Ref | Expression |
|---|---|
| deg1leb.d | ⊢ 𝐷 = (deg1‘𝑅) |
| deg1leb.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| deg1leb.b | ⊢ 𝐵 = (Base‘𝑃) |
| deg1leb.y | ⊢ 0 = (0g‘𝑅) |
| deg1leb.a | ⊢ 𝐴 = (coe1‘𝐹) |
| Ref | Expression |
|---|---|
| deg1val | ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐴 supp 0 ), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1leb.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 2 | 1 | deg1fval 25985 | . . 3 ⊢ 𝐷 = (1o mDeg 𝑅) |
| 3 | eqid 2729 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 4 | deg1leb.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | deg1leb.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 6 | 4, 5 | ply1bas 22079 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
| 7 | deg1leb.y | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 8 | psr1baslem 22069 | . . 3 ⊢ (ℕ0 ↑m 1o) = {𝑦 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑦 “ ℕ) ∈ Fin} | |
| 9 | tdeglem2 25966 | . . 3 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg 𝑥)) | |
| 10 | 2, 3, 6, 7, 8, 9 | mdegval 25968 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup(((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < )) |
| 11 | 7 | fvexi 6872 | . . . . . . . 8 ⊢ 0 ∈ V |
| 12 | suppimacnv 8153 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 0 ∈ V) → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) | |
| 13 | 11, 12 | mpan2 691 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
| 14 | 13 | imaeq2d 6031 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (◡𝐹 “ (V ∖ { 0 })))) |
| 15 | imaco 6224 | . . . . . 6 ⊢ (((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 })) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (◡𝐹 “ (V ∖ { 0 }))) | |
| 16 | 14, 15 | eqtr4di 2782 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 }))) |
| 17 | deg1leb.a | . . . . . . . . 9 ⊢ 𝐴 = (coe1‘𝐹) | |
| 18 | df1o2 8441 | . . . . . . . . . 10 ⊢ 1o = {∅} | |
| 19 | nn0ex 12448 | . . . . . . . . . 10 ⊢ ℕ0 ∈ V | |
| 20 | 0ex 5262 | . . . . . . . . . 10 ⊢ ∅ ∈ V | |
| 21 | eqid 2729 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) | |
| 22 | 18, 19, 20, 21 | mapsncnv 8866 | . . . . . . . . 9 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
| 23 | 17, 5, 4, 22 | coe1fval2 22095 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)))) |
| 24 | 23 | cnveqd 5839 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → ◡𝐴 = ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)))) |
| 25 | cnvco 5849 | . . . . . . . 8 ⊢ ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅))) = (◡◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) | |
| 26 | cocnvcnv1 6230 | . . . . . . . 8 ⊢ (◡◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) | |
| 27 | 25, 26 | eqtri 2752 | . . . . . . 7 ⊢ ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅))) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) |
| 28 | 24, 27 | eqtr2di 2781 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) = ◡𝐴) |
| 29 | 28 | imaeq1d 6030 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 })) = (◡𝐴 “ (V ∖ { 0 }))) |
| 30 | 16, 29 | eqtrd 2764 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (◡𝐴 “ (V ∖ { 0 }))) |
| 31 | 17 | fvexi 6872 | . . . . 5 ⊢ 𝐴 ∈ V |
| 32 | suppimacnv 8153 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 0 ∈ V) → (𝐴 supp 0 ) = (◡𝐴 “ (V ∖ { 0 }))) | |
| 33 | 32 | eqcomd 2735 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 0 ∈ V) → (◡𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 )) |
| 34 | 31, 11, 33 | mp2an 692 | . . . 4 ⊢ (◡𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 ) |
| 35 | 30, 34 | eqtrdi 2780 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (𝐴 supp 0 )) |
| 36 | 35 | supeq1d 9397 | . 2 ⊢ (𝐹 ∈ 𝐵 → sup(((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < ) = sup((𝐴 supp 0 ), ℝ*, < )) |
| 37 | 10, 36 | eqtrd 2764 | 1 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐴 supp 0 ), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 ∅c0 4296 {csn 4589 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 1oc1o 8427 ↑m cmap 8799 supcsup 9391 ℝ*cxr 11207 < clt 11208 ℕ0cn0 12442 Basecbs 17179 0gc0g 17402 mPoly cmpl 21815 Poly1cpl1 22061 coe1cco1 22062 deg1cdg1 25959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-gsum 17405 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-mgp 20050 df-ring 20144 df-cring 20145 df-cnfld 21265 df-psr 21818 df-mpl 21820 df-opsr 21822 df-psr1 22064 df-ply1 22066 df-coe1 22067 df-mdeg 25960 df-deg1 25961 |
| This theorem is referenced by: deg1mul3 26021 deg1mul3le 26022 ressdeg1 33535 |
| Copyright terms: Public domain | W3C validator |