| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1val | Structured version Visualization version GIF version | ||
| Description: Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Jul-2019.) |
| Ref | Expression |
|---|---|
| deg1leb.d | ⊢ 𝐷 = (deg1‘𝑅) |
| deg1leb.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| deg1leb.b | ⊢ 𝐵 = (Base‘𝑃) |
| deg1leb.y | ⊢ 0 = (0g‘𝑅) |
| deg1leb.a | ⊢ 𝐴 = (coe1‘𝐹) |
| Ref | Expression |
|---|---|
| deg1val | ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐴 supp 0 ), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1leb.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 2 | 1 | deg1fval 26119 | . . 3 ⊢ 𝐷 = (1o mDeg 𝑅) |
| 3 | eqid 2737 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 4 | deg1leb.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | deg1leb.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 6 | 4, 5 | ply1bas 22196 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
| 7 | deg1leb.y | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 8 | psr1baslem 22186 | . . 3 ⊢ (ℕ0 ↑m 1o) = {𝑦 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑦 “ ℕ) ∈ Fin} | |
| 9 | tdeglem2 26100 | . . 3 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg 𝑥)) | |
| 10 | 2, 3, 6, 7, 8, 9 | mdegval 26102 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup(((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < )) |
| 11 | 7 | fvexi 6920 | . . . . . . . 8 ⊢ 0 ∈ V |
| 12 | suppimacnv 8199 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 0 ∈ V) → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) | |
| 13 | 11, 12 | mpan2 691 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
| 14 | 13 | imaeq2d 6078 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (◡𝐹 “ (V ∖ { 0 })))) |
| 15 | imaco 6271 | . . . . . 6 ⊢ (((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 })) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (◡𝐹 “ (V ∖ { 0 }))) | |
| 16 | 14, 15 | eqtr4di 2795 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 }))) |
| 17 | deg1leb.a | . . . . . . . . 9 ⊢ 𝐴 = (coe1‘𝐹) | |
| 18 | df1o2 8513 | . . . . . . . . . 10 ⊢ 1o = {∅} | |
| 19 | nn0ex 12532 | . . . . . . . . . 10 ⊢ ℕ0 ∈ V | |
| 20 | 0ex 5307 | . . . . . . . . . 10 ⊢ ∅ ∈ V | |
| 21 | eqid 2737 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) | |
| 22 | 18, 19, 20, 21 | mapsncnv 8933 | . . . . . . . . 9 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
| 23 | 17, 5, 4, 22 | coe1fval2 22212 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)))) |
| 24 | 23 | cnveqd 5886 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → ◡𝐴 = ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)))) |
| 25 | cnvco 5896 | . . . . . . . 8 ⊢ ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅))) = (◡◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) | |
| 26 | cocnvcnv1 6277 | . . . . . . . 8 ⊢ (◡◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) | |
| 27 | 25, 26 | eqtri 2765 | . . . . . . 7 ⊢ ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅))) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) |
| 28 | 24, 27 | eqtr2di 2794 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) = ◡𝐴) |
| 29 | 28 | imaeq1d 6077 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 })) = (◡𝐴 “ (V ∖ { 0 }))) |
| 30 | 16, 29 | eqtrd 2777 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (◡𝐴 “ (V ∖ { 0 }))) |
| 31 | 17 | fvexi 6920 | . . . . 5 ⊢ 𝐴 ∈ V |
| 32 | suppimacnv 8199 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 0 ∈ V) → (𝐴 supp 0 ) = (◡𝐴 “ (V ∖ { 0 }))) | |
| 33 | 32 | eqcomd 2743 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 0 ∈ V) → (◡𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 )) |
| 34 | 31, 11, 33 | mp2an 692 | . . . 4 ⊢ (◡𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 ) |
| 35 | 30, 34 | eqtrdi 2793 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (𝐴 supp 0 )) |
| 36 | 35 | supeq1d 9486 | . 2 ⊢ (𝐹 ∈ 𝐵 → sup(((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < ) = sup((𝐴 supp 0 ), ℝ*, < )) |
| 37 | 10, 36 | eqtrd 2777 | 1 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐴 supp 0 ), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∖ cdif 3948 ∅c0 4333 {csn 4626 ↦ cmpt 5225 ◡ccnv 5684 “ cima 5688 ∘ ccom 5689 ‘cfv 6561 (class class class)co 7431 supp csupp 8185 1oc1o 8499 ↑m cmap 8866 supcsup 9480 ℝ*cxr 11294 < clt 11295 ℕ0cn0 12526 Basecbs 17247 0gc0g 17484 mPoly cmpl 21926 Poly1cpl1 22178 coe1cco1 22179 deg1cdg1 26093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17486 df-gsum 17487 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-mgp 20138 df-ring 20232 df-cring 20233 df-cnfld 21365 df-psr 21929 df-mpl 21931 df-opsr 21933 df-psr1 22181 df-ply1 22183 df-coe1 22184 df-mdeg 26094 df-deg1 26095 |
| This theorem is referenced by: deg1mul3 26155 deg1mul3le 26156 ressdeg1 33591 |
| Copyright terms: Public domain | W3C validator |