![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1val | Structured version Visualization version GIF version |
Description: Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Jul-2019.) |
Ref | Expression |
---|---|
deg1leb.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1leb.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1leb.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1leb.y | ⊢ 0 = (0g‘𝑅) |
deg1leb.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
deg1val | ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐴 supp 0 ), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1leb.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | 1 | deg1fval 25960 | . . 3 ⊢ 𝐷 = (1o mDeg 𝑅) |
3 | eqid 2724 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
4 | deg1leb.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | eqid 2724 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
6 | deg1leb.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
7 | 4, 5, 6 | ply1bas 22058 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
8 | deg1leb.y | . . 3 ⊢ 0 = (0g‘𝑅) | |
9 | psr1baslem 22048 | . . 3 ⊢ (ℕ0 ↑m 1o) = {𝑦 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑦 “ ℕ) ∈ Fin} | |
10 | tdeglem2 25941 | . . 3 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg 𝑥)) | |
11 | 2, 3, 7, 8, 9, 10 | mdegval 25943 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup(((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < )) |
12 | 8 | fvexi 6896 | . . . . . . . 8 ⊢ 0 ∈ V |
13 | suppimacnv 8154 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 0 ∈ V) → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) | |
14 | 12, 13 | mpan2 688 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
15 | 14 | imaeq2d 6050 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (◡𝐹 “ (V ∖ { 0 })))) |
16 | imaco 6241 | . . . . . 6 ⊢ (((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 })) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (◡𝐹 “ (V ∖ { 0 }))) | |
17 | 15, 16 | eqtr4di 2782 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 }))) |
18 | deg1leb.a | . . . . . . . . 9 ⊢ 𝐴 = (coe1‘𝐹) | |
19 | df1o2 8469 | . . . . . . . . . 10 ⊢ 1o = {∅} | |
20 | nn0ex 12477 | . . . . . . . . . 10 ⊢ ℕ0 ∈ V | |
21 | 0ex 5298 | . . . . . . . . . 10 ⊢ ∅ ∈ V | |
22 | eqid 2724 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) | |
23 | 19, 20, 21, 22 | mapsncnv 8884 | . . . . . . . . 9 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
24 | 18, 6, 4, 23 | coe1fval2 22073 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)))) |
25 | 24 | cnveqd 5866 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → ◡𝐴 = ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)))) |
26 | cnvco 5876 | . . . . . . . 8 ⊢ ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅))) = (◡◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) | |
27 | cocnvcnv1 6247 | . . . . . . . 8 ⊢ (◡◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) | |
28 | 26, 27 | eqtri 2752 | . . . . . . 7 ⊢ ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅))) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) |
29 | 25, 28 | eqtr2di 2781 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) = ◡𝐴) |
30 | 29 | imaeq1d 6049 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 })) = (◡𝐴 “ (V ∖ { 0 }))) |
31 | 17, 30 | eqtrd 2764 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (◡𝐴 “ (V ∖ { 0 }))) |
32 | 18 | fvexi 6896 | . . . . 5 ⊢ 𝐴 ∈ V |
33 | suppimacnv 8154 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 0 ∈ V) → (𝐴 supp 0 ) = (◡𝐴 “ (V ∖ { 0 }))) | |
34 | 33 | eqcomd 2730 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 0 ∈ V) → (◡𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 )) |
35 | 32, 12, 34 | mp2an 689 | . . . 4 ⊢ (◡𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 ) |
36 | 31, 35 | eqtrdi 2780 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (𝐴 supp 0 )) |
37 | 36 | supeq1d 9438 | . 2 ⊢ (𝐹 ∈ 𝐵 → sup(((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < ) = sup((𝐴 supp 0 ), ℝ*, < )) |
38 | 11, 37 | eqtrd 2764 | 1 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐴 supp 0 ), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∖ cdif 3938 ∅c0 4315 {csn 4621 ↦ cmpt 5222 ◡ccnv 5666 “ cima 5670 ∘ ccom 5671 ‘cfv 6534 (class class class)co 7402 supp csupp 8141 1oc1o 8455 ↑m cmap 8817 supcsup 9432 ℝ*cxr 11246 < clt 11247 ℕ0cn0 12471 Basecbs 17149 0gc0g 17390 mPoly cmpl 21789 PwSer1cps1 22038 Poly1cpl1 22040 coe1cco1 22041 deg1 cdg1 25931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-addf 11186 ax-mulf 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-sup 9434 df-oi 9502 df-card 9931 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13486 df-fzo 13629 df-seq 13968 df-hash 14292 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-gsum 17393 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-grp 18862 df-mulg 18992 df-cntz 19229 df-cmn 19698 df-mgp 20036 df-ring 20136 df-cring 20137 df-cnfld 21235 df-psr 21792 df-mpl 21794 df-opsr 21796 df-psr1 22043 df-ply1 22045 df-coe1 22046 df-mdeg 25932 df-deg1 25933 |
This theorem is referenced by: deg1mul3 25995 deg1mul3le 25996 ressdeg1 33140 |
Copyright terms: Public domain | W3C validator |