![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1val | Structured version Visualization version GIF version |
Description: Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Jul-2019.) |
Ref | Expression |
---|---|
deg1leb.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1leb.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1leb.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1leb.y | ⊢ 0 = (0g‘𝑅) |
deg1leb.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
deg1val | ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐴 supp 0 ), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1leb.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | 1 | deg1fval 26029 | . . 3 ⊢ 𝐷 = (1o mDeg 𝑅) |
3 | eqid 2728 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
4 | deg1leb.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | eqid 2728 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
6 | deg1leb.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
7 | 4, 5, 6 | ply1bas 22114 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
8 | deg1leb.y | . . 3 ⊢ 0 = (0g‘𝑅) | |
9 | psr1baslem 22104 | . . 3 ⊢ (ℕ0 ↑m 1o) = {𝑦 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑦 “ ℕ) ∈ Fin} | |
10 | tdeglem2 26010 | . . 3 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg 𝑥)) | |
11 | 2, 3, 7, 8, 9, 10 | mdegval 26012 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup(((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < )) |
12 | 8 | fvexi 6911 | . . . . . . . 8 ⊢ 0 ∈ V |
13 | suppimacnv 8179 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 0 ∈ V) → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) | |
14 | 12, 13 | mpan2 690 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
15 | 14 | imaeq2d 6063 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (◡𝐹 “ (V ∖ { 0 })))) |
16 | imaco 6255 | . . . . . 6 ⊢ (((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 })) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (◡𝐹 “ (V ∖ { 0 }))) | |
17 | 15, 16 | eqtr4di 2786 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 }))) |
18 | deg1leb.a | . . . . . . . . 9 ⊢ 𝐴 = (coe1‘𝐹) | |
19 | df1o2 8494 | . . . . . . . . . 10 ⊢ 1o = {∅} | |
20 | nn0ex 12509 | . . . . . . . . . 10 ⊢ ℕ0 ∈ V | |
21 | 0ex 5307 | . . . . . . . . . 10 ⊢ ∅ ∈ V | |
22 | eqid 2728 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) | |
23 | 19, 20, 21, 22 | mapsncnv 8912 | . . . . . . . . 9 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
24 | 18, 6, 4, 23 | coe1fval2 22129 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)))) |
25 | 24 | cnveqd 5878 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → ◡𝐴 = ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)))) |
26 | cnvco 5888 | . . . . . . . 8 ⊢ ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅))) = (◡◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) | |
27 | cocnvcnv1 6261 | . . . . . . . 8 ⊢ (◡◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) | |
28 | 26, 27 | eqtri 2756 | . . . . . . 7 ⊢ ◡(𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅))) = ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) |
29 | 25, 28 | eqtr2di 2785 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) = ◡𝐴) |
30 | 29 | imaeq1d 6062 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) ∘ ◡𝐹) “ (V ∖ { 0 })) = (◡𝐴 “ (V ∖ { 0 }))) |
31 | 17, 30 | eqtrd 2768 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (◡𝐴 “ (V ∖ { 0 }))) |
32 | 18 | fvexi 6911 | . . . . 5 ⊢ 𝐴 ∈ V |
33 | suppimacnv 8179 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 0 ∈ V) → (𝐴 supp 0 ) = (◡𝐴 “ (V ∖ { 0 }))) | |
34 | 33 | eqcomd 2734 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 0 ∈ V) → (◡𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 )) |
35 | 32, 12, 34 | mp2an 691 | . . . 4 ⊢ (◡𝐴 “ (V ∖ { 0 })) = (𝐴 supp 0 ) |
36 | 31, 35 | eqtrdi 2784 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )) = (𝐴 supp 0 )) |
37 | 36 | supeq1d 9470 | . 2 ⊢ (𝐹 ∈ 𝐵 → sup(((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) “ (𝐹 supp 0 )), ℝ*, < ) = sup((𝐴 supp 0 ), ℝ*, < )) |
38 | 11, 37 | eqtrd 2768 | 1 ⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) = sup((𝐴 supp 0 ), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∖ cdif 3944 ∅c0 4323 {csn 4629 ↦ cmpt 5231 ◡ccnv 5677 “ cima 5681 ∘ ccom 5682 ‘cfv 6548 (class class class)co 7420 supp csupp 8165 1oc1o 8480 ↑m cmap 8845 supcsup 9464 ℝ*cxr 11278 < clt 11279 ℕ0cn0 12503 Basecbs 17180 0gc0g 17421 mPoly cmpl 21839 PwSer1cps1 22094 Poly1cpl1 22096 coe1cco1 22097 deg1 cdg1 26000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-addf 11218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-sup 9466 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-fz 13518 df-fzo 13661 df-seq 14000 df-hash 14323 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-sca 17249 df-vsca 17250 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-0g 17423 df-gsum 17424 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-mulg 19024 df-cntz 19268 df-cmn 19737 df-mgp 20075 df-ring 20175 df-cring 20176 df-cnfld 21280 df-psr 21842 df-mpl 21844 df-opsr 21846 df-psr1 22099 df-ply1 22101 df-coe1 22102 df-mdeg 26001 df-deg1 26002 |
This theorem is referenced by: deg1mul3 26064 deg1mul3le 26065 ressdeg1 33251 |
Copyright terms: Public domain | W3C validator |