Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosselcnvrefrels5 Structured version   Visualization version   GIF version

Theorem cosselcnvrefrels5 36582
Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 5-Sep-2021.)
Assertion
Ref Expression
cosselcnvrefrels5 ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ∧ ≀ 𝑅 ∈ Rels ))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem cosselcnvrefrels5
StepHypRef Expression
1 cosselcnvrefrels2 36579 . 2 ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ))
2 cossssid5 36516 . . 3 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅))
32anbi1i 623 . 2 (( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ↔ (∀𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ∧ ≀ 𝑅 ∈ Rels ))
41, 3bitri 274 1 ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑥 ∈ ran 𝑅𝑦 ∈ ran 𝑅(𝑥 = 𝑦 ∨ ([𝑥]𝑅 ∩ [𝑦]𝑅) = ∅) ∧ ≀ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  cin 3882  wss 3883  c0 4253   I cid 5479  ccnv 5579  ran crn 5581  [cec 8454  ccoss 36260   Rels crels 36262   CnvRefRels ccnvrefrels 36268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rmo 3071  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458  df-coss 36464  df-rels 36530  df-ssr 36543  df-cnvrefs 36568  df-cnvrefrels 36569
This theorem is referenced by:  elfunsALTV5  36734
  Copyright terms: Public domain W3C validator