MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnlem2 Structured version   Visualization version   GIF version

Theorem ipcnlem2 24095
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.v 𝑉 = (Base‘𝑊)
ipcn.h , = (·𝑖𝑊)
ipcn.d 𝐷 = (dist‘𝑊)
ipcn.n 𝑁 = (norm‘𝑊)
ipcn.t 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
ipcn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
ipcn.w (𝜑𝑊 ∈ ℂPreHil)
ipcn.a (𝜑𝐴𝑉)
ipcn.b (𝜑𝐵𝑉)
ipcn.r (𝜑𝑅 ∈ ℝ+)
ipcn.x (𝜑𝑋𝑉)
ipcn.y (𝜑𝑌𝑉)
ipcn.1 (𝜑 → (𝐴𝐷𝑋) < 𝑈)
ipcn.2 (𝜑 → (𝐵𝐷𝑌) < 𝑇)
Assertion
Ref Expression
ipcnlem2 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅)

Proof of Theorem ipcnlem2
StepHypRef Expression
1 ipcn.w . . 3 (𝜑𝑊 ∈ ℂPreHil)
2 ipcn.a . . 3 (𝜑𝐴𝑉)
3 ipcn.b . . 3 (𝜑𝐵𝑉)
4 ipcn.v . . . 4 𝑉 = (Base‘𝑊)
5 ipcn.h . . . 4 , = (·𝑖𝑊)
64, 5cphipcl 24042 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ ℂ)
71, 2, 3, 6syl3anc 1373 . 2 (𝜑 → (𝐴 , 𝐵) ∈ ℂ)
8 ipcn.x . . 3 (𝜑𝑋𝑉)
9 ipcn.y . . 3 (𝜑𝑌𝑉)
104, 5cphipcl 24042 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ ℂ)
111, 8, 9, 10syl3anc 1373 . 2 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
124, 5cphipcl 24042 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝑌𝑉) → (𝐴 , 𝑌) ∈ ℂ)
131, 2, 9, 12syl3anc 1373 . 2 (𝜑 → (𝐴 , 𝑌) ∈ ℂ)
14 ipcn.r . . 3 (𝜑𝑅 ∈ ℝ+)
1514rpred 12593 . 2 (𝜑𝑅 ∈ ℝ)
167, 13subcld 11154 . . . 4 (𝜑 → ((𝐴 , 𝐵) − (𝐴 , 𝑌)) ∈ ℂ)
1716abscld 14965 . . 3 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ∈ ℝ)
18 cphnlm 24023 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
191, 18syl 17 . . . . . . . 8 (𝜑𝑊 ∈ NrmMod)
20 nlmngp 23529 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2119, 20syl 17 . . . . . . 7 (𝜑𝑊 ∈ NrmGrp)
22 ipcn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
234, 22nmcl 23468 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2421, 2, 23syl2anc 587 . . . . . 6 (𝜑 → (𝑁𝐴) ∈ ℝ)
254, 22nmge0 23469 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
2621, 2, 25syl2anc 587 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐴))
2724, 26ge0p1rpd 12623 . . . . 5 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ+)
2827rpred 12593 . . . 4 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ)
29 ngpms 23452 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
3021, 29syl 17 . . . . 5 (𝜑𝑊 ∈ MetSp)
31 ipcn.d . . . . . 6 𝐷 = (dist‘𝑊)
324, 31mscl 23313 . . . . 5 ((𝑊 ∈ MetSp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) ∈ ℝ)
3330, 3, 9, 32syl3anc 1373 . . . 4 (𝜑 → (𝐵𝐷𝑌) ∈ ℝ)
3428, 33remulcld 10828 . . 3 (𝜑 → (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) ∈ ℝ)
3515rehalfcld 12042 . . 3 (𝜑 → (𝑅 / 2) ∈ ℝ)
3624, 33remulcld 10828 . . . 4 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) ∈ ℝ)
37 eqid 2736 . . . . . . . 8 (-g𝑊) = (-g𝑊)
385, 4, 37cphsubdi 24060 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝑌𝑉)) → (𝐴 , (𝐵(-g𝑊)𝑌)) = ((𝐴 , 𝐵) − (𝐴 , 𝑌)))
391, 2, 3, 9, 38syl13anc 1374 . . . . . 6 (𝜑 → (𝐴 , (𝐵(-g𝑊)𝑌)) = ((𝐴 , 𝐵) − (𝐴 , 𝑌)))
4039fveq2d 6699 . . . . 5 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) = (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))))
41 ngpgrp 23451 . . . . . . . . 9 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
4221, 41syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Grp)
434, 37grpsubcl 18397 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝐵𝑉𝑌𝑉) → (𝐵(-g𝑊)𝑌) ∈ 𝑉)
4442, 3, 9, 43syl3anc 1373 . . . . . . 7 (𝜑 → (𝐵(-g𝑊)𝑌) ∈ 𝑉)
454, 5, 22ipcau 24089 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ∧ (𝐵(-g𝑊)𝑌) ∈ 𝑉) → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
461, 2, 44, 45syl3anc 1373 . . . . . 6 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
4722, 4, 37, 31ngpds 23456 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) = (𝑁‘(𝐵(-g𝑊)𝑌)))
4821, 3, 9, 47syl3anc 1373 . . . . . . 7 (𝜑 → (𝐵𝐷𝑌) = (𝑁‘(𝐵(-g𝑊)𝑌)))
4948oveq2d 7207 . . . . . 6 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) = ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
5046, 49breqtrrd 5067 . . . . 5 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝐵𝐷𝑌)))
5140, 50eqbrtrrd 5063 . . . 4 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ≤ ((𝑁𝐴) · (𝐵𝐷𝑌)))
52 msxms 23306 . . . . . . 7 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
5330, 52syl 17 . . . . . 6 (𝜑𝑊 ∈ ∞MetSp)
544, 31xmsge0 23315 . . . . . 6 ((𝑊 ∈ ∞MetSp ∧ 𝐵𝑉𝑌𝑉) → 0 ≤ (𝐵𝐷𝑌))
5553, 3, 9, 54syl3anc 1373 . . . . 5 (𝜑 → 0 ≤ (𝐵𝐷𝑌))
5624lep1d 11728 . . . . 5 (𝜑 → (𝑁𝐴) ≤ ((𝑁𝐴) + 1))
5724, 28, 33, 55, 56lemul1ad 11736 . . . 4 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) ≤ (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)))
5817, 36, 34, 51, 57letrd 10954 . . 3 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ≤ (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)))
59 ipcn.2 . . . . 5 (𝜑 → (𝐵𝐷𝑌) < 𝑇)
60 ipcn.t . . . . 5 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
6159, 60breqtrdi 5080 . . . 4 (𝜑 → (𝐵𝐷𝑌) < ((𝑅 / 2) / ((𝑁𝐴) + 1)))
6233, 35, 27ltmuldiv2d 12641 . . . 4 (𝜑 → ((((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) < (𝑅 / 2) ↔ (𝐵𝐷𝑌) < ((𝑅 / 2) / ((𝑁𝐴) + 1))))
6361, 62mpbird 260 . . 3 (𝜑 → (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) < (𝑅 / 2))
6417, 34, 35, 58, 63lelttrd 10955 . 2 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) < (𝑅 / 2))
6513, 11subcld 11154 . . . 4 (𝜑 → ((𝐴 , 𝑌) − (𝑋 , 𝑌)) ∈ ℂ)
6665abscld 14965 . . 3 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ∈ ℝ)
674, 31mscl 23313 . . . . 5 ((𝑊 ∈ MetSp ∧ 𝐴𝑉𝑋𝑉) → (𝐴𝐷𝑋) ∈ ℝ)
6830, 2, 8, 67syl3anc 1373 . . . 4 (𝜑 → (𝐴𝐷𝑋) ∈ ℝ)
694, 22nmcl 23468 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (𝑁𝐵) ∈ ℝ)
7021, 3, 69syl2anc 587 . . . . 5 (𝜑 → (𝑁𝐵) ∈ ℝ)
7114rphalfcld 12605 . . . . . . . 8 (𝜑 → (𝑅 / 2) ∈ ℝ+)
7271, 27rpdivcld 12610 . . . . . . 7 (𝜑 → ((𝑅 / 2) / ((𝑁𝐴) + 1)) ∈ ℝ+)
7360, 72eqeltrid 2835 . . . . . 6 (𝜑𝑇 ∈ ℝ+)
7473rpred 12593 . . . . 5 (𝜑𝑇 ∈ ℝ)
7570, 74readdcld 10827 . . . 4 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ)
7668, 75remulcld 10828 . . 3 (𝜑 → ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) ∈ ℝ)
774, 22nmcl 23468 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉) → (𝑁𝑌) ∈ ℝ)
7821, 9, 77syl2anc 587 . . . . 5 (𝜑 → (𝑁𝑌) ∈ ℝ)
7968, 78remulcld 10828 . . . 4 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) ∈ ℝ)
805, 4, 37cphsubdir 24059 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝑋𝑉𝑌𝑉)) → ((𝐴(-g𝑊)𝑋) , 𝑌) = ((𝐴 , 𝑌) − (𝑋 , 𝑌)))
811, 2, 8, 9, 80syl13anc 1374 . . . . . 6 (𝜑 → ((𝐴(-g𝑊)𝑋) , 𝑌) = ((𝐴 , 𝑌) − (𝑋 , 𝑌)))
8281fveq2d 6699 . . . . 5 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) = (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))))
834, 37grpsubcl 18397 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝑋𝑉) → (𝐴(-g𝑊)𝑋) ∈ 𝑉)
8442, 2, 8, 83syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴(-g𝑊)𝑋) ∈ 𝑉)
854, 5, 22ipcau 24089 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝑋) ∈ 𝑉𝑌𝑉) → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
861, 84, 9, 85syl3anc 1373 . . . . . 6 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
8722, 4, 37, 31ngpds 23456 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉𝑋𝑉) → (𝐴𝐷𝑋) = (𝑁‘(𝐴(-g𝑊)𝑋)))
8821, 2, 8, 87syl3anc 1373 . . . . . . 7 (𝜑 → (𝐴𝐷𝑋) = (𝑁‘(𝐴(-g𝑊)𝑋)))
8988oveq1d 7206 . . . . . 6 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) = ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
9086, 89breqtrrd 5067 . . . . 5 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝐴𝐷𝑋) · (𝑁𝑌)))
9182, 90eqbrtrrd 5063 . . . 4 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ≤ ((𝐴𝐷𝑋) · (𝑁𝑌)))
924, 31xmsge0 23315 . . . . . 6 ((𝑊 ∈ ∞MetSp ∧ 𝐴𝑉𝑋𝑉) → 0 ≤ (𝐴𝐷𝑋))
9353, 2, 8, 92syl3anc 1373 . . . . 5 (𝜑 → 0 ≤ (𝐴𝐷𝑋))
9478, 70resubcld 11225 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ∈ ℝ)
954, 22, 37nm2dif 23477 . . . . . . . . 9 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝐵𝑉) → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝑁‘(𝑌(-g𝑊)𝐵)))
9621, 9, 3, 95syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝑁‘(𝑌(-g𝑊)𝐵)))
9722, 4, 37, 31ngpdsr 23457 . . . . . . . . 9 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝐵)))
9821, 3, 9, 97syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐵𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝐵)))
9996, 98breqtrrd 5067 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝐵𝐷𝑌))
10033, 74, 59ltled 10945 . . . . . . 7 (𝜑 → (𝐵𝐷𝑌) ≤ 𝑇)
10194, 33, 74, 99, 100letrd 10954 . . . . . 6 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ 𝑇)
10278, 70, 74lesubadd2d 11396 . . . . . 6 (𝜑 → (((𝑁𝑌) − (𝑁𝐵)) ≤ 𝑇 ↔ (𝑁𝑌) ≤ ((𝑁𝐵) + 𝑇)))
103101, 102mpbid 235 . . . . 5 (𝜑 → (𝑁𝑌) ≤ ((𝑁𝐵) + 𝑇))
10478, 75, 68, 93, 103lemul2ad 11737 . . . 4 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) ≤ ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)))
10566, 79, 76, 91, 104letrd 10954 . . 3 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ≤ ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)))
106 ipcn.1 . . . . 5 (𝜑 → (𝐴𝐷𝑋) < 𝑈)
107 ipcn.u . . . . 5 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
108106, 107breqtrdi 5080 . . . 4 (𝜑 → (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇)))
109 0red 10801 . . . . . 6 (𝜑 → 0 ∈ ℝ)
1104, 22nmge0 23469 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝑁𝐵))
11121, 3, 110syl2anc 587 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐵))
11270, 73ltaddrpd 12626 . . . . . 6 (𝜑 → (𝑁𝐵) < ((𝑁𝐵) + 𝑇))
113109, 70, 75, 111, 112lelttrd 10955 . . . . 5 (𝜑 → 0 < ((𝑁𝐵) + 𝑇))
114 ltmuldiv 11670 . . . . 5 (((𝐴𝐷𝑋) ∈ ℝ ∧ (𝑅 / 2) ∈ ℝ ∧ (((𝑁𝐵) + 𝑇) ∈ ℝ ∧ 0 < ((𝑁𝐵) + 𝑇))) → (((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2) ↔ (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))))
11568, 35, 75, 113, 114syl112anc 1376 . . . 4 (𝜑 → (((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2) ↔ (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))))
116108, 115mpbird 260 . . 3 (𝜑 → ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2))
11766, 76, 35, 105, 116lelttrd 10955 . 2 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) < (𝑅 / 2))
1187, 11, 13, 15, 64, 117abs3lemd 14990 1 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2112   class class class wbr 5039  cfv 6358  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699   < clt 10832  cle 10833  cmin 11027   / cdiv 11454  2c2 11850  +crp 12551  abscabs 14762  Basecbs 16666  ·𝑖cip 16754  distcds 16758  Grpcgrp 18319  -gcsg 18321  ∞MetSpcxms 23169  MetSpcms 23170  normcnm 23428  NrmGrpcngp 23429  NrmModcnlm 23432  ℂPreHilccph 24017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ico 12906  df-fz 13061  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-0g 16900  df-topgen 16902  df-xrs 16961  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-grp 18322  df-minusg 18323  df-sbg 18324  df-subg 18494  df-ghm 18574  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-dvr 19655  df-rnghom 19689  df-drng 19723  df-subrg 19752  df-staf 19835  df-srng 19836  df-lmod 19855  df-lmhm 20013  df-lvec 20094  df-sra 20163  df-rgmod 20164  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-cnfld 20318  df-phl 20542  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-xms 23172  df-ms 23173  df-nm 23434  df-ngp 23435  df-tng 23436  df-nlm 23438  df-clm 23914  df-cph 24019  df-tcph 24020
This theorem is referenced by:  ipcnlem1  24096
  Copyright terms: Public domain W3C validator