MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnlem2 Structured version   Visualization version   GIF version

Theorem ipcnlem2 23852
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.v 𝑉 = (Base‘𝑊)
ipcn.h , = (·𝑖𝑊)
ipcn.d 𝐷 = (dist‘𝑊)
ipcn.n 𝑁 = (norm‘𝑊)
ipcn.t 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
ipcn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
ipcn.w (𝜑𝑊 ∈ ℂPreHil)
ipcn.a (𝜑𝐴𝑉)
ipcn.b (𝜑𝐵𝑉)
ipcn.r (𝜑𝑅 ∈ ℝ+)
ipcn.x (𝜑𝑋𝑉)
ipcn.y (𝜑𝑌𝑉)
ipcn.1 (𝜑 → (𝐴𝐷𝑋) < 𝑈)
ipcn.2 (𝜑 → (𝐵𝐷𝑌) < 𝑇)
Assertion
Ref Expression
ipcnlem2 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅)

Proof of Theorem ipcnlem2
StepHypRef Expression
1 ipcn.w . . 3 (𝜑𝑊 ∈ ℂPreHil)
2 ipcn.a . . 3 (𝜑𝐴𝑉)
3 ipcn.b . . 3 (𝜑𝐵𝑉)
4 ipcn.v . . . 4 𝑉 = (Base‘𝑊)
5 ipcn.h . . . 4 , = (·𝑖𝑊)
64, 5cphipcl 23800 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ ℂ)
71, 2, 3, 6syl3anc 1368 . 2 (𝜑 → (𝐴 , 𝐵) ∈ ℂ)
8 ipcn.x . . 3 (𝜑𝑋𝑉)
9 ipcn.y . . 3 (𝜑𝑌𝑉)
104, 5cphipcl 23800 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ ℂ)
111, 8, 9, 10syl3anc 1368 . 2 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
124, 5cphipcl 23800 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝑌𝑉) → (𝐴 , 𝑌) ∈ ℂ)
131, 2, 9, 12syl3anc 1368 . 2 (𝜑 → (𝐴 , 𝑌) ∈ ℂ)
14 ipcn.r . . 3 (𝜑𝑅 ∈ ℝ+)
1514rpred 12423 . 2 (𝜑𝑅 ∈ ℝ)
167, 13subcld 10990 . . . 4 (𝜑 → ((𝐴 , 𝐵) − (𝐴 , 𝑌)) ∈ ℂ)
1716abscld 14792 . . 3 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ∈ ℝ)
18 cphnlm 23781 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
191, 18syl 17 . . . . . . . 8 (𝜑𝑊 ∈ NrmMod)
20 nlmngp 23287 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2119, 20syl 17 . . . . . . 7 (𝜑𝑊 ∈ NrmGrp)
22 ipcn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
234, 22nmcl 23226 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2421, 2, 23syl2anc 587 . . . . . 6 (𝜑 → (𝑁𝐴) ∈ ℝ)
254, 22nmge0 23227 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
2621, 2, 25syl2anc 587 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐴))
2724, 26ge0p1rpd 12453 . . . . 5 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ+)
2827rpred 12423 . . . 4 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ)
29 ngpms 23210 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
3021, 29syl 17 . . . . 5 (𝜑𝑊 ∈ MetSp)
31 ipcn.d . . . . . 6 𝐷 = (dist‘𝑊)
324, 31mscl 23072 . . . . 5 ((𝑊 ∈ MetSp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) ∈ ℝ)
3330, 3, 9, 32syl3anc 1368 . . . 4 (𝜑 → (𝐵𝐷𝑌) ∈ ℝ)
3428, 33remulcld 10664 . . 3 (𝜑 → (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) ∈ ℝ)
3515rehalfcld 11876 . . 3 (𝜑 → (𝑅 / 2) ∈ ℝ)
3624, 33remulcld 10664 . . . 4 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) ∈ ℝ)
37 eqid 2801 . . . . . . . 8 (-g𝑊) = (-g𝑊)
385, 4, 37cphsubdi 23818 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝑌𝑉)) → (𝐴 , (𝐵(-g𝑊)𝑌)) = ((𝐴 , 𝐵) − (𝐴 , 𝑌)))
391, 2, 3, 9, 38syl13anc 1369 . . . . . 6 (𝜑 → (𝐴 , (𝐵(-g𝑊)𝑌)) = ((𝐴 , 𝐵) − (𝐴 , 𝑌)))
4039fveq2d 6653 . . . . 5 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) = (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))))
41 ngpgrp 23209 . . . . . . . . 9 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
4221, 41syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Grp)
434, 37grpsubcl 18175 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝐵𝑉𝑌𝑉) → (𝐵(-g𝑊)𝑌) ∈ 𝑉)
4442, 3, 9, 43syl3anc 1368 . . . . . . 7 (𝜑 → (𝐵(-g𝑊)𝑌) ∈ 𝑉)
454, 5, 22ipcau 23846 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ∧ (𝐵(-g𝑊)𝑌) ∈ 𝑉) → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
461, 2, 44, 45syl3anc 1368 . . . . . 6 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
4722, 4, 37, 31ngpds 23214 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) = (𝑁‘(𝐵(-g𝑊)𝑌)))
4821, 3, 9, 47syl3anc 1368 . . . . . . 7 (𝜑 → (𝐵𝐷𝑌) = (𝑁‘(𝐵(-g𝑊)𝑌)))
4948oveq2d 7155 . . . . . 6 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) = ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
5046, 49breqtrrd 5061 . . . . 5 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝐵𝐷𝑌)))
5140, 50eqbrtrrd 5057 . . . 4 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ≤ ((𝑁𝐴) · (𝐵𝐷𝑌)))
52 msxms 23065 . . . . . . 7 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
5330, 52syl 17 . . . . . 6 (𝜑𝑊 ∈ ∞MetSp)
544, 31xmsge0 23074 . . . . . 6 ((𝑊 ∈ ∞MetSp ∧ 𝐵𝑉𝑌𝑉) → 0 ≤ (𝐵𝐷𝑌))
5553, 3, 9, 54syl3anc 1368 . . . . 5 (𝜑 → 0 ≤ (𝐵𝐷𝑌))
5624lep1d 11564 . . . . 5 (𝜑 → (𝑁𝐴) ≤ ((𝑁𝐴) + 1))
5724, 28, 33, 55, 56lemul1ad 11572 . . . 4 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) ≤ (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)))
5817, 36, 34, 51, 57letrd 10790 . . 3 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ≤ (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)))
59 ipcn.2 . . . . 5 (𝜑 → (𝐵𝐷𝑌) < 𝑇)
60 ipcn.t . . . . 5 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
6159, 60breqtrdi 5074 . . . 4 (𝜑 → (𝐵𝐷𝑌) < ((𝑅 / 2) / ((𝑁𝐴) + 1)))
6233, 35, 27ltmuldiv2d 12471 . . . 4 (𝜑 → ((((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) < (𝑅 / 2) ↔ (𝐵𝐷𝑌) < ((𝑅 / 2) / ((𝑁𝐴) + 1))))
6361, 62mpbird 260 . . 3 (𝜑 → (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) < (𝑅 / 2))
6417, 34, 35, 58, 63lelttrd 10791 . 2 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) < (𝑅 / 2))
6513, 11subcld 10990 . . . 4 (𝜑 → ((𝐴 , 𝑌) − (𝑋 , 𝑌)) ∈ ℂ)
6665abscld 14792 . . 3 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ∈ ℝ)
674, 31mscl 23072 . . . . 5 ((𝑊 ∈ MetSp ∧ 𝐴𝑉𝑋𝑉) → (𝐴𝐷𝑋) ∈ ℝ)
6830, 2, 8, 67syl3anc 1368 . . . 4 (𝜑 → (𝐴𝐷𝑋) ∈ ℝ)
694, 22nmcl 23226 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (𝑁𝐵) ∈ ℝ)
7021, 3, 69syl2anc 587 . . . . 5 (𝜑 → (𝑁𝐵) ∈ ℝ)
7114rphalfcld 12435 . . . . . . . 8 (𝜑 → (𝑅 / 2) ∈ ℝ+)
7271, 27rpdivcld 12440 . . . . . . 7 (𝜑 → ((𝑅 / 2) / ((𝑁𝐴) + 1)) ∈ ℝ+)
7360, 72eqeltrid 2897 . . . . . 6 (𝜑𝑇 ∈ ℝ+)
7473rpred 12423 . . . . 5 (𝜑𝑇 ∈ ℝ)
7570, 74readdcld 10663 . . . 4 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ)
7668, 75remulcld 10664 . . 3 (𝜑 → ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) ∈ ℝ)
774, 22nmcl 23226 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉) → (𝑁𝑌) ∈ ℝ)
7821, 9, 77syl2anc 587 . . . . 5 (𝜑 → (𝑁𝑌) ∈ ℝ)
7968, 78remulcld 10664 . . . 4 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) ∈ ℝ)
805, 4, 37cphsubdir 23817 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝑋𝑉𝑌𝑉)) → ((𝐴(-g𝑊)𝑋) , 𝑌) = ((𝐴 , 𝑌) − (𝑋 , 𝑌)))
811, 2, 8, 9, 80syl13anc 1369 . . . . . 6 (𝜑 → ((𝐴(-g𝑊)𝑋) , 𝑌) = ((𝐴 , 𝑌) − (𝑋 , 𝑌)))
8281fveq2d 6653 . . . . 5 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) = (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))))
834, 37grpsubcl 18175 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝑋𝑉) → (𝐴(-g𝑊)𝑋) ∈ 𝑉)
8442, 2, 8, 83syl3anc 1368 . . . . . . 7 (𝜑 → (𝐴(-g𝑊)𝑋) ∈ 𝑉)
854, 5, 22ipcau 23846 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝑋) ∈ 𝑉𝑌𝑉) → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
861, 84, 9, 85syl3anc 1368 . . . . . 6 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
8722, 4, 37, 31ngpds 23214 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉𝑋𝑉) → (𝐴𝐷𝑋) = (𝑁‘(𝐴(-g𝑊)𝑋)))
8821, 2, 8, 87syl3anc 1368 . . . . . . 7 (𝜑 → (𝐴𝐷𝑋) = (𝑁‘(𝐴(-g𝑊)𝑋)))
8988oveq1d 7154 . . . . . 6 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) = ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
9086, 89breqtrrd 5061 . . . . 5 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝐴𝐷𝑋) · (𝑁𝑌)))
9182, 90eqbrtrrd 5057 . . . 4 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ≤ ((𝐴𝐷𝑋) · (𝑁𝑌)))
924, 31xmsge0 23074 . . . . . 6 ((𝑊 ∈ ∞MetSp ∧ 𝐴𝑉𝑋𝑉) → 0 ≤ (𝐴𝐷𝑋))
9353, 2, 8, 92syl3anc 1368 . . . . 5 (𝜑 → 0 ≤ (𝐴𝐷𝑋))
9478, 70resubcld 11061 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ∈ ℝ)
954, 22, 37nm2dif 23235 . . . . . . . . 9 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝐵𝑉) → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝑁‘(𝑌(-g𝑊)𝐵)))
9621, 9, 3, 95syl3anc 1368 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝑁‘(𝑌(-g𝑊)𝐵)))
9722, 4, 37, 31ngpdsr 23215 . . . . . . . . 9 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝐵)))
9821, 3, 9, 97syl3anc 1368 . . . . . . . 8 (𝜑 → (𝐵𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝐵)))
9996, 98breqtrrd 5061 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝐵𝐷𝑌))
10033, 74, 59ltled 10781 . . . . . . 7 (𝜑 → (𝐵𝐷𝑌) ≤ 𝑇)
10194, 33, 74, 99, 100letrd 10790 . . . . . 6 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ 𝑇)
10278, 70, 74lesubadd2d 11232 . . . . . 6 (𝜑 → (((𝑁𝑌) − (𝑁𝐵)) ≤ 𝑇 ↔ (𝑁𝑌) ≤ ((𝑁𝐵) + 𝑇)))
103101, 102mpbid 235 . . . . 5 (𝜑 → (𝑁𝑌) ≤ ((𝑁𝐵) + 𝑇))
10478, 75, 68, 93, 103lemul2ad 11573 . . . 4 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) ≤ ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)))
10566, 79, 76, 91, 104letrd 10790 . . 3 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ≤ ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)))
106 ipcn.1 . . . . 5 (𝜑 → (𝐴𝐷𝑋) < 𝑈)
107 ipcn.u . . . . 5 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
108106, 107breqtrdi 5074 . . . 4 (𝜑 → (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇)))
109 0red 10637 . . . . . 6 (𝜑 → 0 ∈ ℝ)
1104, 22nmge0 23227 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝑁𝐵))
11121, 3, 110syl2anc 587 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐵))
11270, 73ltaddrpd 12456 . . . . . 6 (𝜑 → (𝑁𝐵) < ((𝑁𝐵) + 𝑇))
113109, 70, 75, 111, 112lelttrd 10791 . . . . 5 (𝜑 → 0 < ((𝑁𝐵) + 𝑇))
114 ltmuldiv 11506 . . . . 5 (((𝐴𝐷𝑋) ∈ ℝ ∧ (𝑅 / 2) ∈ ℝ ∧ (((𝑁𝐵) + 𝑇) ∈ ℝ ∧ 0 < ((𝑁𝐵) + 𝑇))) → (((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2) ↔ (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))))
11568, 35, 75, 113, 114syl112anc 1371 . . . 4 (𝜑 → (((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2) ↔ (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))))
116108, 115mpbird 260 . . 3 (𝜑 → ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2))
11766, 76, 35, 105, 116lelttrd 10791 . 2 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) < (𝑅 / 2))
1187, 11, 13, 15, 64, 117abs3lemd 14817 1 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2112   class class class wbr 5033  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cle 10669  cmin 10863   / cdiv 11290  2c2 11684  +crp 12381  abscabs 14589  Basecbs 16479  ·𝑖cip 16566  distcds 16570  Grpcgrp 18099  -gcsg 18101  ∞MetSpcxms 22928  MetSpcms 22929  normcnm 23187  NrmGrpcngp 23188  NrmModcnlm 23191  ℂPreHilccph 23775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ico 12736  df-fz 12890  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-0g 16711  df-topgen 16713  df-xrs 16771  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-grp 18102  df-minusg 18103  df-sbg 18104  df-subg 18272  df-ghm 18352  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-cring 19297  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19501  df-subrg 19530  df-staf 19613  df-srng 19614  df-lmod 19633  df-lmhm 19791  df-lvec 19872  df-sra 19941  df-rgmod 19942  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-cnfld 20096  df-phl 20319  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-xms 22931  df-ms 22932  df-nm 23193  df-ngp 23194  df-tng 23195  df-nlm 23197  df-clm 23672  df-cph 23777  df-tcph 23778
This theorem is referenced by:  ipcnlem1  23853
  Copyright terms: Public domain W3C validator