Proof of Theorem ipcnlem2
Step | Hyp | Ref
| Expression |
1 | | ipcn.w |
. . 3
⊢ (𝜑 → 𝑊 ∈ ℂPreHil) |
2 | | ipcn.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
3 | | ipcn.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
4 | | ipcn.v |
. . . 4
⊢ 𝑉 = (Base‘𝑊) |
5 | | ipcn.h |
. . . 4
⊢ , =
(·𝑖‘𝑊) |
6 | 4, 5 | cphipcl 24260 |
. . 3
⊢ ((𝑊 ∈ ℂPreHil ∧
𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ ℂ) |
7 | 1, 2, 3, 6 | syl3anc 1369 |
. 2
⊢ (𝜑 → (𝐴 , 𝐵) ∈ ℂ) |
8 | | ipcn.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
9 | | ipcn.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
10 | 4, 5 | cphipcl 24260 |
. . 3
⊢ ((𝑊 ∈ ℂPreHil ∧
𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 , 𝑌) ∈ ℂ) |
11 | 1, 8, 9, 10 | syl3anc 1369 |
. 2
⊢ (𝜑 → (𝑋 , 𝑌) ∈ ℂ) |
12 | 4, 5 | cphipcl 24260 |
. . 3
⊢ ((𝑊 ∈ ℂPreHil ∧
𝐴 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐴 , 𝑌) ∈ ℂ) |
13 | 1, 2, 9, 12 | syl3anc 1369 |
. 2
⊢ (𝜑 → (𝐴 , 𝑌) ∈ ℂ) |
14 | | ipcn.r |
. . 3
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
15 | 14 | rpred 12701 |
. 2
⊢ (𝜑 → 𝑅 ∈ ℝ) |
16 | 7, 13 | subcld 11262 |
. . . 4
⊢ (𝜑 → ((𝐴 , 𝐵) − (𝐴 , 𝑌)) ∈ ℂ) |
17 | 16 | abscld 15076 |
. . 3
⊢ (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ∈ ℝ) |
18 | | cphnlm 24241 |
. . . . . . . . 9
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
NrmMod) |
19 | 1, 18 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ NrmMod) |
20 | | nlmngp 23747 |
. . . . . . . 8
⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) |
21 | 19, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ NrmGrp) |
22 | | ipcn.n |
. . . . . . . 8
⊢ 𝑁 = (norm‘𝑊) |
23 | 4, 22 | nmcl 23678 |
. . . . . . 7
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) ∈ ℝ) |
24 | 21, 2, 23 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝑁‘𝐴) ∈ ℝ) |
25 | 4, 22 | nmge0 23679 |
. . . . . . 7
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉) → 0 ≤ (𝑁‘𝐴)) |
26 | 21, 2, 25 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → 0 ≤ (𝑁‘𝐴)) |
27 | 24, 26 | ge0p1rpd 12731 |
. . . . 5
⊢ (𝜑 → ((𝑁‘𝐴) + 1) ∈
ℝ+) |
28 | 27 | rpred 12701 |
. . . 4
⊢ (𝜑 → ((𝑁‘𝐴) + 1) ∈ ℝ) |
29 | | ngpms 23662 |
. . . . . 6
⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp) |
30 | 21, 29 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ MetSp) |
31 | | ipcn.d |
. . . . . 6
⊢ 𝐷 = (dist‘𝑊) |
32 | 4, 31 | mscl 23522 |
. . . . 5
⊢ ((𝑊 ∈ MetSp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐵𝐷𝑌) ∈ ℝ) |
33 | 30, 3, 9, 32 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → (𝐵𝐷𝑌) ∈ ℝ) |
34 | 28, 33 | remulcld 10936 |
. . 3
⊢ (𝜑 → (((𝑁‘𝐴) + 1) · (𝐵𝐷𝑌)) ∈ ℝ) |
35 | 15 | rehalfcld 12150 |
. . 3
⊢ (𝜑 → (𝑅 / 2) ∈ ℝ) |
36 | 24, 33 | remulcld 10936 |
. . . 4
⊢ (𝜑 → ((𝑁‘𝐴) · (𝐵𝐷𝑌)) ∈ ℝ) |
37 | | eqid 2738 |
. . . . . . . 8
⊢
(-g‘𝑊) = (-g‘𝑊) |
38 | 5, 4, 37 | cphsubdi 24278 |
. . . . . . 7
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 , (𝐵(-g‘𝑊)𝑌)) = ((𝐴 , 𝐵) − (𝐴 , 𝑌))) |
39 | 1, 2, 3, 9, 38 | syl13anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝐴 , (𝐵(-g‘𝑊)𝑌)) = ((𝐴 , 𝐵) − (𝐴 , 𝑌))) |
40 | 39 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 → (abs‘(𝐴 , (𝐵(-g‘𝑊)𝑌))) = (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌)))) |
41 | | ngpgrp 23661 |
. . . . . . . . 9
⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp) |
42 | 21, 41 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ Grp) |
43 | 4, 37 | grpsubcl 18570 |
. . . . . . . 8
⊢ ((𝑊 ∈ Grp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐵(-g‘𝑊)𝑌) ∈ 𝑉) |
44 | 42, 3, 9, 43 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝐵(-g‘𝑊)𝑌) ∈ 𝑉) |
45 | 4, 5, 22 | ipcau 24307 |
. . . . . . 7
⊢ ((𝑊 ∈ ℂPreHil ∧
𝐴 ∈ 𝑉 ∧ (𝐵(-g‘𝑊)𝑌) ∈ 𝑉) → (abs‘(𝐴 , (𝐵(-g‘𝑊)𝑌))) ≤ ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑊)𝑌)))) |
46 | 1, 2, 44, 45 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (abs‘(𝐴 , (𝐵(-g‘𝑊)𝑌))) ≤ ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑊)𝑌)))) |
47 | 22, 4, 37, 31 | ngpds 23666 |
. . . . . . . 8
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐵𝐷𝑌) = (𝑁‘(𝐵(-g‘𝑊)𝑌))) |
48 | 21, 3, 9, 47 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝐵𝐷𝑌) = (𝑁‘(𝐵(-g‘𝑊)𝑌))) |
49 | 48 | oveq2d 7271 |
. . . . . 6
⊢ (𝜑 → ((𝑁‘𝐴) · (𝐵𝐷𝑌)) = ((𝑁‘𝐴) · (𝑁‘(𝐵(-g‘𝑊)𝑌)))) |
50 | 46, 49 | breqtrrd 5098 |
. . . . 5
⊢ (𝜑 → (abs‘(𝐴 , (𝐵(-g‘𝑊)𝑌))) ≤ ((𝑁‘𝐴) · (𝐵𝐷𝑌))) |
51 | 40, 50 | eqbrtrrd 5094 |
. . . 4
⊢ (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ≤ ((𝑁‘𝐴) · (𝐵𝐷𝑌))) |
52 | | msxms 23515 |
. . . . . . 7
⊢ (𝑊 ∈ MetSp → 𝑊 ∈
∞MetSp) |
53 | 30, 52 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ ∞MetSp) |
54 | 4, 31 | xmsge0 23524 |
. . . . . 6
⊢ ((𝑊 ∈ ∞MetSp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 0 ≤ (𝐵𝐷𝑌)) |
55 | 53, 3, 9, 54 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → 0 ≤ (𝐵𝐷𝑌)) |
56 | 24 | lep1d 11836 |
. . . . 5
⊢ (𝜑 → (𝑁‘𝐴) ≤ ((𝑁‘𝐴) + 1)) |
57 | 24, 28, 33, 55, 56 | lemul1ad 11844 |
. . . 4
⊢ (𝜑 → ((𝑁‘𝐴) · (𝐵𝐷𝑌)) ≤ (((𝑁‘𝐴) + 1) · (𝐵𝐷𝑌))) |
58 | 17, 36, 34, 51, 57 | letrd 11062 |
. . 3
⊢ (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ≤ (((𝑁‘𝐴) + 1) · (𝐵𝐷𝑌))) |
59 | | ipcn.2 |
. . . . 5
⊢ (𝜑 → (𝐵𝐷𝑌) < 𝑇) |
60 | | ipcn.t |
. . . . 5
⊢ 𝑇 = ((𝑅 / 2) / ((𝑁‘𝐴) + 1)) |
61 | 59, 60 | breqtrdi 5111 |
. . . 4
⊢ (𝜑 → (𝐵𝐷𝑌) < ((𝑅 / 2) / ((𝑁‘𝐴) + 1))) |
62 | 33, 35, 27 | ltmuldiv2d 12749 |
. . . 4
⊢ (𝜑 → ((((𝑁‘𝐴) + 1) · (𝐵𝐷𝑌)) < (𝑅 / 2) ↔ (𝐵𝐷𝑌) < ((𝑅 / 2) / ((𝑁‘𝐴) + 1)))) |
63 | 61, 62 | mpbird 256 |
. . 3
⊢ (𝜑 → (((𝑁‘𝐴) + 1) · (𝐵𝐷𝑌)) < (𝑅 / 2)) |
64 | 17, 34, 35, 58, 63 | lelttrd 11063 |
. 2
⊢ (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) < (𝑅 / 2)) |
65 | 13, 11 | subcld 11262 |
. . . 4
⊢ (𝜑 → ((𝐴 , 𝑌) − (𝑋 , 𝑌)) ∈ ℂ) |
66 | 65 | abscld 15076 |
. . 3
⊢ (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ∈ ℝ) |
67 | 4, 31 | mscl 23522 |
. . . . 5
⊢ ((𝑊 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝐴𝐷𝑋) ∈ ℝ) |
68 | 30, 2, 8, 67 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → (𝐴𝐷𝑋) ∈ ℝ) |
69 | 4, 22 | nmcl 23678 |
. . . . . 6
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → (𝑁‘𝐵) ∈ ℝ) |
70 | 21, 3, 69 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝑁‘𝐵) ∈ ℝ) |
71 | 14 | rphalfcld 12713 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 / 2) ∈
ℝ+) |
72 | 71, 27 | rpdivcld 12718 |
. . . . . . 7
⊢ (𝜑 → ((𝑅 / 2) / ((𝑁‘𝐴) + 1)) ∈
ℝ+) |
73 | 60, 72 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈
ℝ+) |
74 | 73 | rpred 12701 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ ℝ) |
75 | 70, 74 | readdcld 10935 |
. . . 4
⊢ (𝜑 → ((𝑁‘𝐵) + 𝑇) ∈ ℝ) |
76 | 68, 75 | remulcld 10936 |
. . 3
⊢ (𝜑 → ((𝐴𝐷𝑋) · ((𝑁‘𝐵) + 𝑇)) ∈ ℝ) |
77 | 4, 22 | nmcl 23678 |
. . . . . 6
⊢ ((𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉) → (𝑁‘𝑌) ∈ ℝ) |
78 | 21, 9, 77 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝑁‘𝑌) ∈ ℝ) |
79 | 68, 78 | remulcld 10936 |
. . . 4
⊢ (𝜑 → ((𝐴𝐷𝑋) · (𝑁‘𝑌)) ∈ ℝ) |
80 | 5, 4, 37 | cphsubdir 24277 |
. . . . . . 7
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴(-g‘𝑊)𝑋) , 𝑌) = ((𝐴 , 𝑌) − (𝑋 , 𝑌))) |
81 | 1, 2, 8, 9, 80 | syl13anc 1370 |
. . . . . 6
⊢ (𝜑 → ((𝐴(-g‘𝑊)𝑋) , 𝑌) = ((𝐴 , 𝑌) − (𝑋 , 𝑌))) |
82 | 81 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 → (abs‘((𝐴(-g‘𝑊)𝑋) , 𝑌)) = (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌)))) |
83 | 4, 37 | grpsubcl 18570 |
. . . . . . . 8
⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝐴(-g‘𝑊)𝑋) ∈ 𝑉) |
84 | 42, 2, 8, 83 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝐴(-g‘𝑊)𝑋) ∈ 𝑉) |
85 | 4, 5, 22 | ipcau 24307 |
. . . . . . 7
⊢ ((𝑊 ∈ ℂPreHil ∧
(𝐴(-g‘𝑊)𝑋) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (abs‘((𝐴(-g‘𝑊)𝑋) , 𝑌)) ≤ ((𝑁‘(𝐴(-g‘𝑊)𝑋)) · (𝑁‘𝑌))) |
86 | 1, 84, 9, 85 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (abs‘((𝐴(-g‘𝑊)𝑋) , 𝑌)) ≤ ((𝑁‘(𝐴(-g‘𝑊)𝑋)) · (𝑁‘𝑌))) |
87 | 22, 4, 37, 31 | ngpds 23666 |
. . . . . . . 8
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝐴𝐷𝑋) = (𝑁‘(𝐴(-g‘𝑊)𝑋))) |
88 | 21, 2, 8, 87 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝐴𝐷𝑋) = (𝑁‘(𝐴(-g‘𝑊)𝑋))) |
89 | 88 | oveq1d 7270 |
. . . . . 6
⊢ (𝜑 → ((𝐴𝐷𝑋) · (𝑁‘𝑌)) = ((𝑁‘(𝐴(-g‘𝑊)𝑋)) · (𝑁‘𝑌))) |
90 | 86, 89 | breqtrrd 5098 |
. . . . 5
⊢ (𝜑 → (abs‘((𝐴(-g‘𝑊)𝑋) , 𝑌)) ≤ ((𝐴𝐷𝑋) · (𝑁‘𝑌))) |
91 | 82, 90 | eqbrtrrd 5094 |
. . . 4
⊢ (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ≤ ((𝐴𝐷𝑋) · (𝑁‘𝑌))) |
92 | 4, 31 | xmsge0 23524 |
. . . . . 6
⊢ ((𝑊 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → 0 ≤ (𝐴𝐷𝑋)) |
93 | 53, 2, 8, 92 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → 0 ≤ (𝐴𝐷𝑋)) |
94 | 78, 70 | resubcld 11333 |
. . . . . . 7
⊢ (𝜑 → ((𝑁‘𝑌) − (𝑁‘𝐵)) ∈ ℝ) |
95 | 4, 22, 37 | nm2dif 23687 |
. . . . . . . . 9
⊢ ((𝑊 ∈ NrmGrp ∧ 𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝑁‘𝑌) − (𝑁‘𝐵)) ≤ (𝑁‘(𝑌(-g‘𝑊)𝐵))) |
96 | 21, 9, 3, 95 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁‘𝑌) − (𝑁‘𝐵)) ≤ (𝑁‘(𝑌(-g‘𝑊)𝐵))) |
97 | 22, 4, 37, 31 | ngpdsr 23667 |
. . . . . . . . 9
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐵𝐷𝑌) = (𝑁‘(𝑌(-g‘𝑊)𝐵))) |
98 | 21, 3, 9, 97 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝜑 → (𝐵𝐷𝑌) = (𝑁‘(𝑌(-g‘𝑊)𝐵))) |
99 | 96, 98 | breqtrrd 5098 |
. . . . . . 7
⊢ (𝜑 → ((𝑁‘𝑌) − (𝑁‘𝐵)) ≤ (𝐵𝐷𝑌)) |
100 | 33, 74, 59 | ltled 11053 |
. . . . . . 7
⊢ (𝜑 → (𝐵𝐷𝑌) ≤ 𝑇) |
101 | 94, 33, 74, 99, 100 | letrd 11062 |
. . . . . 6
⊢ (𝜑 → ((𝑁‘𝑌) − (𝑁‘𝐵)) ≤ 𝑇) |
102 | 78, 70, 74 | lesubadd2d 11504 |
. . . . . 6
⊢ (𝜑 → (((𝑁‘𝑌) − (𝑁‘𝐵)) ≤ 𝑇 ↔ (𝑁‘𝑌) ≤ ((𝑁‘𝐵) + 𝑇))) |
103 | 101, 102 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝑁‘𝑌) ≤ ((𝑁‘𝐵) + 𝑇)) |
104 | 78, 75, 68, 93, 103 | lemul2ad 11845 |
. . . 4
⊢ (𝜑 → ((𝐴𝐷𝑋) · (𝑁‘𝑌)) ≤ ((𝐴𝐷𝑋) · ((𝑁‘𝐵) + 𝑇))) |
105 | 66, 79, 76, 91, 104 | letrd 11062 |
. . 3
⊢ (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ≤ ((𝐴𝐷𝑋) · ((𝑁‘𝐵) + 𝑇))) |
106 | | ipcn.1 |
. . . . 5
⊢ (𝜑 → (𝐴𝐷𝑋) < 𝑈) |
107 | | ipcn.u |
. . . . 5
⊢ 𝑈 = ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇)) |
108 | 106, 107 | breqtrdi 5111 |
. . . 4
⊢ (𝜑 → (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇))) |
109 | | 0red 10909 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℝ) |
110 | 4, 22 | nmge0 23679 |
. . . . . . 7
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → 0 ≤ (𝑁‘𝐵)) |
111 | 21, 3, 110 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → 0 ≤ (𝑁‘𝐵)) |
112 | 70, 73 | ltaddrpd 12734 |
. . . . . 6
⊢ (𝜑 → (𝑁‘𝐵) < ((𝑁‘𝐵) + 𝑇)) |
113 | 109, 70, 75, 111, 112 | lelttrd 11063 |
. . . . 5
⊢ (𝜑 → 0 < ((𝑁‘𝐵) + 𝑇)) |
114 | | ltmuldiv 11778 |
. . . . 5
⊢ (((𝐴𝐷𝑋) ∈ ℝ ∧ (𝑅 / 2) ∈ ℝ ∧ (((𝑁‘𝐵) + 𝑇) ∈ ℝ ∧ 0 < ((𝑁‘𝐵) + 𝑇))) → (((𝐴𝐷𝑋) · ((𝑁‘𝐵) + 𝑇)) < (𝑅 / 2) ↔ (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇)))) |
115 | 68, 35, 75, 113, 114 | syl112anc 1372 |
. . . 4
⊢ (𝜑 → (((𝐴𝐷𝑋) · ((𝑁‘𝐵) + 𝑇)) < (𝑅 / 2) ↔ (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇)))) |
116 | 108, 115 | mpbird 256 |
. . 3
⊢ (𝜑 → ((𝐴𝐷𝑋) · ((𝑁‘𝐵) + 𝑇)) < (𝑅 / 2)) |
117 | 66, 76, 35, 105, 116 | lelttrd 11063 |
. 2
⊢ (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) < (𝑅 / 2)) |
118 | 7, 11, 13, 15, 64, 117 | abs3lemd 15101 |
1
⊢ (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅) |