MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnlem2 Structured version   Visualization version   GIF version

Theorem ipcnlem2 23262
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.v 𝑉 = (Base‘𝑊)
ipcn.h , = (·𝑖𝑊)
ipcn.d 𝐷 = (dist‘𝑊)
ipcn.n 𝑁 = (norm‘𝑊)
ipcn.t 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
ipcn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
ipcn.w (𝜑𝑊 ∈ ℂPreHil)
ipcn.a (𝜑𝐴𝑉)
ipcn.b (𝜑𝐵𝑉)
ipcn.r (𝜑𝑅 ∈ ℝ+)
ipcn.x (𝜑𝑋𝑉)
ipcn.y (𝜑𝑌𝑉)
ipcn.1 (𝜑 → (𝐴𝐷𝑋) < 𝑈)
ipcn.2 (𝜑 → (𝐵𝐷𝑌) < 𝑇)
Assertion
Ref Expression
ipcnlem2 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅)

Proof of Theorem ipcnlem2
StepHypRef Expression
1 ipcn.w . . 3 (𝜑𝑊 ∈ ℂPreHil)
2 ipcn.a . . 3 (𝜑𝐴𝑉)
3 ipcn.b . . 3 (𝜑𝐵𝑉)
4 ipcn.v . . . 4 𝑉 = (Base‘𝑊)
5 ipcn.h . . . 4 , = (·𝑖𝑊)
64, 5cphipcl 23210 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ ℂ)
71, 2, 3, 6syl3anc 1476 . 2 (𝜑 → (𝐴 , 𝐵) ∈ ℂ)
8 ipcn.x . . 3 (𝜑𝑋𝑉)
9 ipcn.y . . 3 (𝜑𝑌𝑉)
104, 5cphipcl 23210 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ ℂ)
111, 8, 9, 10syl3anc 1476 . 2 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
124, 5cphipcl 23210 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝑌𝑉) → (𝐴 , 𝑌) ∈ ℂ)
131, 2, 9, 12syl3anc 1476 . 2 (𝜑 → (𝐴 , 𝑌) ∈ ℂ)
14 ipcn.r . . 3 (𝜑𝑅 ∈ ℝ+)
1514rpred 12075 . 2 (𝜑𝑅 ∈ ℝ)
167, 13subcld 10594 . . . 4 (𝜑 → ((𝐴 , 𝐵) − (𝐴 , 𝑌)) ∈ ℂ)
1716abscld 14383 . . 3 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ∈ ℝ)
18 cphnlm 23191 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
191, 18syl 17 . . . . . . . 8 (𝜑𝑊 ∈ NrmMod)
20 nlmngp 22701 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2119, 20syl 17 . . . . . . 7 (𝜑𝑊 ∈ NrmGrp)
22 ipcn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
234, 22nmcl 22640 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2421, 2, 23syl2anc 573 . . . . . 6 (𝜑 → (𝑁𝐴) ∈ ℝ)
254, 22nmge0 22641 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
2621, 2, 25syl2anc 573 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐴))
2724, 26ge0p1rpd 12105 . . . . 5 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ+)
2827rpred 12075 . . . 4 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ)
29 ngpms 22624 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
3021, 29syl 17 . . . . 5 (𝜑𝑊 ∈ MetSp)
31 ipcn.d . . . . . 6 𝐷 = (dist‘𝑊)
324, 31mscl 22486 . . . . 5 ((𝑊 ∈ MetSp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) ∈ ℝ)
3330, 3, 9, 32syl3anc 1476 . . . 4 (𝜑 → (𝐵𝐷𝑌) ∈ ℝ)
3428, 33remulcld 10272 . . 3 (𝜑 → (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) ∈ ℝ)
3515rehalfcld 11481 . . 3 (𝜑 → (𝑅 / 2) ∈ ℝ)
3624, 33remulcld 10272 . . . 4 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) ∈ ℝ)
37 eqid 2771 . . . . . . . 8 (-g𝑊) = (-g𝑊)
385, 4, 37cphsubdi 23228 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝑌𝑉)) → (𝐴 , (𝐵(-g𝑊)𝑌)) = ((𝐴 , 𝐵) − (𝐴 , 𝑌)))
391, 2, 3, 9, 38syl13anc 1478 . . . . . 6 (𝜑 → (𝐴 , (𝐵(-g𝑊)𝑌)) = ((𝐴 , 𝐵) − (𝐴 , 𝑌)))
4039fveq2d 6336 . . . . 5 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) = (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))))
41 ngpgrp 22623 . . . . . . . . 9 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
4221, 41syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Grp)
434, 37grpsubcl 17703 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝐵𝑉𝑌𝑉) → (𝐵(-g𝑊)𝑌) ∈ 𝑉)
4442, 3, 9, 43syl3anc 1476 . . . . . . 7 (𝜑 → (𝐵(-g𝑊)𝑌) ∈ 𝑉)
454, 5, 22ipcau 23256 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ∧ (𝐵(-g𝑊)𝑌) ∈ 𝑉) → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
461, 2, 44, 45syl3anc 1476 . . . . . 6 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
4722, 4, 37, 31ngpds 22628 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) = (𝑁‘(𝐵(-g𝑊)𝑌)))
4821, 3, 9, 47syl3anc 1476 . . . . . . 7 (𝜑 → (𝐵𝐷𝑌) = (𝑁‘(𝐵(-g𝑊)𝑌)))
4948oveq2d 6809 . . . . . 6 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) = ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
5046, 49breqtrrd 4814 . . . . 5 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝐵𝐷𝑌)))
5140, 50eqbrtrrd 4810 . . . 4 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ≤ ((𝑁𝐴) · (𝐵𝐷𝑌)))
52 msxms 22479 . . . . . . 7 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
5330, 52syl 17 . . . . . 6 (𝜑𝑊 ∈ ∞MetSp)
544, 31xmsge0 22488 . . . . . 6 ((𝑊 ∈ ∞MetSp ∧ 𝐵𝑉𝑌𝑉) → 0 ≤ (𝐵𝐷𝑌))
5553, 3, 9, 54syl3anc 1476 . . . . 5 (𝜑 → 0 ≤ (𝐵𝐷𝑌))
5624lep1d 11157 . . . . 5 (𝜑 → (𝑁𝐴) ≤ ((𝑁𝐴) + 1))
5724, 28, 33, 55, 56lemul1ad 11165 . . . 4 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) ≤ (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)))
5817, 36, 34, 51, 57letrd 10396 . . 3 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ≤ (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)))
59 ipcn.2 . . . . 5 (𝜑 → (𝐵𝐷𝑌) < 𝑇)
60 ipcn.t . . . . 5 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
6159, 60syl6breq 4827 . . . 4 (𝜑 → (𝐵𝐷𝑌) < ((𝑅 / 2) / ((𝑁𝐴) + 1)))
6233, 35, 27ltmuldiv2d 12123 . . . 4 (𝜑 → ((((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) < (𝑅 / 2) ↔ (𝐵𝐷𝑌) < ((𝑅 / 2) / ((𝑁𝐴) + 1))))
6361, 62mpbird 247 . . 3 (𝜑 → (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) < (𝑅 / 2))
6417, 34, 35, 58, 63lelttrd 10397 . 2 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) < (𝑅 / 2))
6513, 11subcld 10594 . . . 4 (𝜑 → ((𝐴 , 𝑌) − (𝑋 , 𝑌)) ∈ ℂ)
6665abscld 14383 . . 3 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ∈ ℝ)
674, 31mscl 22486 . . . . 5 ((𝑊 ∈ MetSp ∧ 𝐴𝑉𝑋𝑉) → (𝐴𝐷𝑋) ∈ ℝ)
6830, 2, 8, 67syl3anc 1476 . . . 4 (𝜑 → (𝐴𝐷𝑋) ∈ ℝ)
694, 22nmcl 22640 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (𝑁𝐵) ∈ ℝ)
7021, 3, 69syl2anc 573 . . . . 5 (𝜑 → (𝑁𝐵) ∈ ℝ)
7114rphalfcld 12087 . . . . . . . 8 (𝜑 → (𝑅 / 2) ∈ ℝ+)
7271, 27rpdivcld 12092 . . . . . . 7 (𝜑 → ((𝑅 / 2) / ((𝑁𝐴) + 1)) ∈ ℝ+)
7360, 72syl5eqel 2854 . . . . . 6 (𝜑𝑇 ∈ ℝ+)
7473rpred 12075 . . . . 5 (𝜑𝑇 ∈ ℝ)
7570, 74readdcld 10271 . . . 4 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ)
7668, 75remulcld 10272 . . 3 (𝜑 → ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) ∈ ℝ)
774, 22nmcl 22640 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉) → (𝑁𝑌) ∈ ℝ)
7821, 9, 77syl2anc 573 . . . . 5 (𝜑 → (𝑁𝑌) ∈ ℝ)
7968, 78remulcld 10272 . . . 4 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) ∈ ℝ)
805, 4, 37cphsubdir 23227 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝑋𝑉𝑌𝑉)) → ((𝐴(-g𝑊)𝑋) , 𝑌) = ((𝐴 , 𝑌) − (𝑋 , 𝑌)))
811, 2, 8, 9, 80syl13anc 1478 . . . . . 6 (𝜑 → ((𝐴(-g𝑊)𝑋) , 𝑌) = ((𝐴 , 𝑌) − (𝑋 , 𝑌)))
8281fveq2d 6336 . . . . 5 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) = (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))))
834, 37grpsubcl 17703 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝑋𝑉) → (𝐴(-g𝑊)𝑋) ∈ 𝑉)
8442, 2, 8, 83syl3anc 1476 . . . . . . 7 (𝜑 → (𝐴(-g𝑊)𝑋) ∈ 𝑉)
854, 5, 22ipcau 23256 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝑋) ∈ 𝑉𝑌𝑉) → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
861, 84, 9, 85syl3anc 1476 . . . . . 6 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
8722, 4, 37, 31ngpds 22628 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉𝑋𝑉) → (𝐴𝐷𝑋) = (𝑁‘(𝐴(-g𝑊)𝑋)))
8821, 2, 8, 87syl3anc 1476 . . . . . . 7 (𝜑 → (𝐴𝐷𝑋) = (𝑁‘(𝐴(-g𝑊)𝑋)))
8988oveq1d 6808 . . . . . 6 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) = ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
9086, 89breqtrrd 4814 . . . . 5 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝐴𝐷𝑋) · (𝑁𝑌)))
9182, 90eqbrtrrd 4810 . . . 4 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ≤ ((𝐴𝐷𝑋) · (𝑁𝑌)))
924, 31xmsge0 22488 . . . . . 6 ((𝑊 ∈ ∞MetSp ∧ 𝐴𝑉𝑋𝑉) → 0 ≤ (𝐴𝐷𝑋))
9353, 2, 8, 92syl3anc 1476 . . . . 5 (𝜑 → 0 ≤ (𝐴𝐷𝑋))
9478, 70resubcld 10660 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ∈ ℝ)
954, 22, 37nm2dif 22649 . . . . . . . . 9 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝐵𝑉) → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝑁‘(𝑌(-g𝑊)𝐵)))
9621, 9, 3, 95syl3anc 1476 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝑁‘(𝑌(-g𝑊)𝐵)))
9722, 4, 37, 31ngpdsr 22629 . . . . . . . . 9 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝐵)))
9821, 3, 9, 97syl3anc 1476 . . . . . . . 8 (𝜑 → (𝐵𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝐵)))
9996, 98breqtrrd 4814 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝐵𝐷𝑌))
10033, 74, 59ltled 10387 . . . . . . 7 (𝜑 → (𝐵𝐷𝑌) ≤ 𝑇)
10194, 33, 74, 99, 100letrd 10396 . . . . . 6 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ 𝑇)
10278, 70, 74lesubadd2d 10828 . . . . . 6 (𝜑 → (((𝑁𝑌) − (𝑁𝐵)) ≤ 𝑇 ↔ (𝑁𝑌) ≤ ((𝑁𝐵) + 𝑇)))
103101, 102mpbid 222 . . . . 5 (𝜑 → (𝑁𝑌) ≤ ((𝑁𝐵) + 𝑇))
10478, 75, 68, 93, 103lemul2ad 11166 . . . 4 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) ≤ ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)))
10566, 79, 76, 91, 104letrd 10396 . . 3 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ≤ ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)))
106 ipcn.1 . . . . 5 (𝜑 → (𝐴𝐷𝑋) < 𝑈)
107 ipcn.u . . . . 5 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
108106, 107syl6breq 4827 . . . 4 (𝜑 → (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇)))
109 0red 10243 . . . . . 6 (𝜑 → 0 ∈ ℝ)
1104, 22nmge0 22641 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝑁𝐵))
11121, 3, 110syl2anc 573 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐵))
11270, 73ltaddrpd 12108 . . . . . 6 (𝜑 → (𝑁𝐵) < ((𝑁𝐵) + 𝑇))
113109, 70, 75, 111, 112lelttrd 10397 . . . . 5 (𝜑 → 0 < ((𝑁𝐵) + 𝑇))
114 ltmuldiv 11098 . . . . 5 (((𝐴𝐷𝑋) ∈ ℝ ∧ (𝑅 / 2) ∈ ℝ ∧ (((𝑁𝐵) + 𝑇) ∈ ℝ ∧ 0 < ((𝑁𝐵) + 𝑇))) → (((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2) ↔ (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))))
11568, 35, 75, 113, 114syl112anc 1480 . . . 4 (𝜑 → (((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2) ↔ (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))))
116108, 115mpbird 247 . . 3 (𝜑 → ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2))
11766, 76, 35, 105, 116lelttrd 10397 . 2 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) < (𝑅 / 2))
1187, 11, 13, 15, 64, 117abs3lemd 14408 1 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1631  wcel 2145   class class class wbr 4786  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143   < clt 10276  cle 10277  cmin 10468   / cdiv 10886  2c2 11272  +crp 12035  abscabs 14182  Basecbs 16064  ·𝑖cip 16154  distcds 16158  Grpcgrp 17630  -gcsg 17632  ∞MetSpcxme 22342  MetSpcmt 22343  normcnm 22601  NrmGrpcngp 22602  NrmModcnlm 22605  ℂPreHilccph 23185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ico 12386  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-0g 16310  df-topgen 16312  df-xrs 16370  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-ghm 17866  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-dvr 18891  df-rnghom 18925  df-drng 18959  df-subrg 18988  df-staf 19055  df-srng 19056  df-lmod 19075  df-lmhm 19235  df-lvec 19316  df-sra 19387  df-rgmod 19388  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-phl 20188  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-xms 22345  df-ms 22346  df-nm 22607  df-ngp 22608  df-tng 22609  df-nlm 22611  df-clm 23082  df-cph 23187  df-tch 23188
This theorem is referenced by:  ipcnlem1  23263
  Copyright terms: Public domain W3C validator