![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphngp | Structured version Visualization version GIF version |
Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cphngp | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphnlm 25228 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
2 | nlmngp 24720 | . 2 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 NrmGrpcngp 24612 NrmModcnlm 24615 ℂPreHilccph 25222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5313 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rab 3435 df-v 3481 df-sbc 3793 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-xp 5696 df-cnv 5698 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fv 6574 df-ov 7438 df-nlm 24621 df-cph 25224 |
This theorem is referenced by: cphnmf 25251 reipcl 25253 ipge0 25254 cphpyth 25272 cphipval2 25297 4cphipval2 25298 cphipval 25299 ipcn 25302 cnmpt1ip 25303 cnmpt2ip 25304 clsocv 25306 minveclem1 25480 minveclem2 25482 minveclem3b 25484 minveclem3 25485 minveclem4a 25486 minveclem4 25488 minveclem6 25490 minveclem7 25491 pjthlem1 25493 rrxngp 46252 |
Copyright terms: Public domain | W3C validator |