MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphngp Structured version   Visualization version   GIF version

Theorem cphngp 25226
Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cphngp (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)

Proof of Theorem cphngp
StepHypRef Expression
1 cphnlm 25225 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
2 nlmngp 24719 . 2 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
31, 2syl 17 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  NrmGrpcngp 24611  NrmModcnlm 24614  ℂPreHilccph 25219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fv 6581  df-ov 7451  df-nlm 24620  df-cph 25221
This theorem is referenced by:  cphnmf  25248  reipcl  25250  ipge0  25251  cphpyth  25269  cphipval2  25294  4cphipval2  25295  cphipval  25296  ipcn  25299  cnmpt1ip  25300  cnmpt2ip  25301  clsocv  25303  minveclem1  25477  minveclem2  25479  minveclem3b  25481  minveclem3  25482  minveclem4a  25483  minveclem4  25485  minveclem6  25487  minveclem7  25488  pjthlem1  25490  rrxngp  46206
  Copyright terms: Public domain W3C validator