MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphngp Structured version   Visualization version   GIF version

Theorem cphngp 23391
Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cphngp (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)

Proof of Theorem cphngp
StepHypRef Expression
1 cphnlm 23390 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
2 nlmngp 22900 . 2 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
31, 2syl 17 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  NrmGrpcngp 22801  NrmModcnlm 22804  ℂPreHilccph 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-nul 5027
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-xp 5363  df-cnv 5365  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fv 6145  df-ov 6927  df-nlm 22810  df-cph 23386
This theorem is referenced by:  cphnmf  23413  reipcl  23415  ipge0  23416  cphipval2  23458  4cphipval2  23459  cphipval  23460  ipcn  23463  cnmpt1ip  23464  cnmpt2ip  23465  clsocv  23467  minveclem1  23641  minveclem2  23643  minveclem3b  23645  minveclem3  23646  minveclem4a  23647  minveclem4  23649  minveclem6  23651  minveclem7  23652  pjthlem1  23654  rrxngp  41443
  Copyright terms: Public domain W3C validator