| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphngp | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphngp | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphnlm 25105 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
| 2 | nlmngp 24598 | . 2 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 NrmGrpcngp 24498 NrmModcnlm 24501 ℂPreHilccph 25099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fv 6507 df-ov 7372 df-nlm 24507 df-cph 25101 |
| This theorem is referenced by: cphnmf 25128 reipcl 25130 ipge0 25131 cphpyth 25149 cphipval2 25174 4cphipval2 25175 cphipval 25176 ipcn 25179 cnmpt1ip 25180 cnmpt2ip 25181 clsocv 25183 minveclem1 25357 minveclem2 25359 minveclem3b 25361 minveclem3 25362 minveclem4a 25363 minveclem4 25365 minveclem6 25367 minveclem7 25368 pjthlem1 25370 rrxngp 46276 |
| Copyright terms: Public domain | W3C validator |