MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphngp Structured version   Visualization version   GIF version

Theorem cphngp 25073
Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cphngp (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)

Proof of Theorem cphngp
StepHypRef Expression
1 cphnlm 25072 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
2 nlmngp 24565 . 2 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
31, 2syl 17 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  NrmGrpcngp 24465  NrmModcnlm 24468  ℂPreHilccph 25066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fv 6519  df-ov 7390  df-nlm 24474  df-cph 25068
This theorem is referenced by:  cphnmf  25095  reipcl  25097  ipge0  25098  cphpyth  25116  cphipval2  25141  4cphipval2  25142  cphipval  25143  ipcn  25146  cnmpt1ip  25147  cnmpt2ip  25148  clsocv  25150  minveclem1  25324  minveclem2  25326  minveclem3b  25328  minveclem3  25329  minveclem4a  25330  minveclem4  25332  minveclem6  25334  minveclem7  25335  pjthlem1  25337  rrxngp  46283
  Copyright terms: Public domain W3C validator