MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphngp Structured version   Visualization version   GIF version

Theorem cphngp 24921
Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cphngp (π‘Š ∈ β„‚PreHil β†’ π‘Š ∈ NrmGrp)

Proof of Theorem cphngp
StepHypRef Expression
1 cphnlm 24920 . 2 (π‘Š ∈ β„‚PreHil β†’ π‘Š ∈ NrmMod)
2 nlmngp 24414 . 2 (π‘Š ∈ NrmMod β†’ π‘Š ∈ NrmGrp)
31, 2syl 17 1 (π‘Š ∈ β„‚PreHil β†’ π‘Š ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2104  NrmGrpcngp 24306  NrmModcnlm 24309  β„‚PreHilccph 24914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fv 6550  df-ov 7414  df-nlm 24315  df-cph 24916
This theorem is referenced by:  cphnmf  24943  reipcl  24945  ipge0  24946  cphpyth  24964  cphipval2  24989  4cphipval2  24990  cphipval  24991  ipcn  24994  cnmpt1ip  24995  cnmpt2ip  24996  clsocv  24998  minveclem1  25172  minveclem2  25174  minveclem3b  25176  minveclem3  25177  minveclem4a  25178  minveclem4  25180  minveclem6  25182  minveclem7  25183  pjthlem1  25185  rrxngp  45299
  Copyright terms: Public domain W3C validator