![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphngp | Structured version Visualization version GIF version |
Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cphngp | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphnlm 23390 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
2 | nlmngp 22900 | . 2 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 NrmGrpcngp 22801 NrmModcnlm 22804 ℂPreHilccph 23384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-nul 5027 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-xp 5363 df-cnv 5365 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fv 6145 df-ov 6927 df-nlm 22810 df-cph 23386 |
This theorem is referenced by: cphnmf 23413 reipcl 23415 ipge0 23416 cphipval2 23458 4cphipval2 23459 cphipval 23460 ipcn 23463 cnmpt1ip 23464 cnmpt2ip 23465 clsocv 23467 minveclem1 23641 minveclem2 23643 minveclem3b 23645 minveclem3 23646 minveclem4a 23647 minveclem4 23649 minveclem6 23651 minveclem7 23652 pjthlem1 23654 rrxngp 41443 |
Copyright terms: Public domain | W3C validator |