Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphngp | Structured version Visualization version GIF version |
Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cphngp | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphnlm 24324 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
2 | nlmngp 23829 | . 2 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 NrmGrpcngp 23721 NrmModcnlm 23724 ℂPreHilccph 24318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5229 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-mpt 5158 df-xp 5591 df-cnv 5593 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fv 6435 df-ov 7271 df-nlm 23730 df-cph 24320 |
This theorem is referenced by: cphnmf 24347 reipcl 24349 ipge0 24350 cphpyth 24368 cphipval2 24393 4cphipval2 24394 cphipval 24395 ipcn 24398 cnmpt1ip 24399 cnmpt2ip 24400 clsocv 24402 minveclem1 24576 minveclem2 24578 minveclem3b 24580 minveclem3 24581 minveclem4a 24582 minveclem4 24584 minveclem6 24586 minveclem7 24587 pjthlem1 24589 rrxngp 43785 |
Copyright terms: Public domain | W3C validator |