| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphngp | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphngp | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphnlm 25070 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
| 2 | nlmngp 24563 | . 2 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 NrmGrpcngp 24463 NrmModcnlm 24466 ℂPreHilccph 25064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fv 6490 df-ov 7352 df-nlm 24472 df-cph 25066 |
| This theorem is referenced by: cphnmf 25093 reipcl 25095 ipge0 25096 cphpyth 25114 cphipval2 25139 4cphipval2 25140 cphipval 25141 ipcn 25144 cnmpt1ip 25145 cnmpt2ip 25146 clsocv 25148 minveclem1 25322 minveclem2 25324 minveclem3b 25326 minveclem3 25327 minveclem4a 25328 minveclem4 25330 minveclem6 25332 minveclem7 25333 pjthlem1 25335 rrxngp 46276 |
| Copyright terms: Public domain | W3C validator |