MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphngp Structured version   Visualization version   GIF version

Theorem cphngp 25158
Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cphngp (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)

Proof of Theorem cphngp
StepHypRef Expression
1 cphnlm 25157 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
2 nlmngp 24649 . 2 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
31, 2syl 17 1 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  NrmGrpcngp 24549  NrmModcnlm 24552  ℂPreHilccph 25151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5288
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rab 3421  df-v 3466  df-sbc 3773  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-xp 5673  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fv 6550  df-ov 7417  df-nlm 24558  df-cph 25153
This theorem is referenced by:  cphnmf  25180  reipcl  25182  ipge0  25183  cphpyth  25201  cphipval2  25226  4cphipval2  25227  cphipval  25228  ipcn  25231  cnmpt1ip  25232  cnmpt2ip  25233  clsocv  25235  minveclem1  25409  minveclem2  25411  minveclem3b  25413  minveclem3  25414  minveclem4a  25415  minveclem4  25417  minveclem6  25419  minveclem7  25420  pjthlem1  25422  rrxngp  46241
  Copyright terms: Public domain W3C validator