| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cphngp | Structured version Visualization version GIF version | ||
| Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cphngp | ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphnlm 25099 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod) | |
| 2 | nlmngp 24592 | . 2 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 NrmGrpcngp 24492 NrmModcnlm 24495 ℂPreHilccph 25093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fv 6489 df-ov 7349 df-nlm 24501 df-cph 25095 |
| This theorem is referenced by: cphnmf 25122 reipcl 25124 ipge0 25125 cphpyth 25143 cphipval2 25168 4cphipval2 25169 cphipval 25170 ipcn 25173 cnmpt1ip 25174 cnmpt2ip 25175 clsocv 25177 minveclem1 25351 minveclem2 25353 minveclem3b 25355 minveclem3 25356 minveclem4a 25357 minveclem4 25359 minveclem6 25361 minveclem7 25362 pjthlem1 25364 rrxngp 46382 |
| Copyright terms: Public domain | W3C validator |