Proof of Theorem ipcnlem1
| Step | Hyp | Ref
| Expression |
| 1 | | ipcn.t |
. . . 4
⊢ 𝑇 = ((𝑅 / 2) / ((𝑁‘𝐴) + 1)) |
| 2 | | ipcn.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
| 3 | 2 | rphalfcld 13063 |
. . . . 5
⊢ (𝜑 → (𝑅 / 2) ∈
ℝ+) |
| 4 | | ipcn.w |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ ℂPreHil) |
| 5 | | cphnlm 25124 |
. . . . . . . . 9
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
NrmMod) |
| 6 | 4, 5 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ NrmMod) |
| 7 | | nlmngp 24616 |
. . . . . . . 8
⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) |
| 8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ NrmGrp) |
| 9 | | ipcn.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 10 | | ipcn.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
| 11 | | ipcn.n |
. . . . . . . 8
⊢ 𝑁 = (norm‘𝑊) |
| 12 | 10, 11 | nmcl 24555 |
. . . . . . 7
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) ∈ ℝ) |
| 13 | 8, 9, 12 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝑁‘𝐴) ∈ ℝ) |
| 14 | 10, 11 | nmge0 24556 |
. . . . . . 7
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉) → 0 ≤ (𝑁‘𝐴)) |
| 15 | 8, 9, 14 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 0 ≤ (𝑁‘𝐴)) |
| 16 | 13, 15 | ge0p1rpd 13081 |
. . . . 5
⊢ (𝜑 → ((𝑁‘𝐴) + 1) ∈
ℝ+) |
| 17 | 3, 16 | rpdivcld 13068 |
. . . 4
⊢ (𝜑 → ((𝑅 / 2) / ((𝑁‘𝐴) + 1)) ∈
ℝ+) |
| 18 | 1, 17 | eqeltrid 2838 |
. . 3
⊢ (𝜑 → 𝑇 ∈
ℝ+) |
| 19 | | ipcn.u |
. . . 4
⊢ 𝑈 = ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇)) |
| 20 | | ipcn.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| 21 | 10, 11 | nmcl 24555 |
. . . . . . . 8
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → (𝑁‘𝐵) ∈ ℝ) |
| 22 | 8, 20, 21 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘𝐵) ∈ ℝ) |
| 23 | 18 | rpred 13051 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 24 | 22, 23 | readdcld 11264 |
. . . . . 6
⊢ (𝜑 → ((𝑁‘𝐵) + 𝑇) ∈ ℝ) |
| 25 | | 0red 11238 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) |
| 26 | 10, 11 | nmge0 24556 |
. . . . . . . 8
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → 0 ≤ (𝑁‘𝐵)) |
| 27 | 8, 20, 26 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ (𝑁‘𝐵)) |
| 28 | 22, 18 | ltaddrpd 13084 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘𝐵) < ((𝑁‘𝐵) + 𝑇)) |
| 29 | 25, 22, 24, 27, 28 | lelttrd 11393 |
. . . . . 6
⊢ (𝜑 → 0 < ((𝑁‘𝐵) + 𝑇)) |
| 30 | 24, 29 | elrpd 13048 |
. . . . 5
⊢ (𝜑 → ((𝑁‘𝐵) + 𝑇) ∈
ℝ+) |
| 31 | 3, 30 | rpdivcld 13068 |
. . . 4
⊢ (𝜑 → ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇)) ∈
ℝ+) |
| 32 | 19, 31 | eqeltrid 2838 |
. . 3
⊢ (𝜑 → 𝑈 ∈
ℝ+) |
| 33 | 18, 32 | ifcld 4547 |
. 2
⊢ (𝜑 → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∈
ℝ+) |
| 34 | | ipcn.h |
. . . . 5
⊢ , =
(·𝑖‘𝑊) |
| 35 | | ipcn.d |
. . . . 5
⊢ 𝐷 = (dist‘𝑊) |
| 36 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ ℂPreHil) |
| 37 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝐴 ∈ 𝑉) |
| 38 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝐵 ∈ 𝑉) |
| 39 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑅 ∈
ℝ+) |
| 40 | | simprll 778 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑥 ∈ 𝑉) |
| 41 | | simprlr 779 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑦 ∈ 𝑉) |
| 42 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ NrmGrp) |
| 43 | | ngpms 24539 |
. . . . . . . 8
⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp) |
| 44 | 42, 43 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp) |
| 45 | 10, 35 | mscl 24400 |
. . . . . . 7
⊢ ((𝑊 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → (𝐴𝐷𝑥) ∈ ℝ) |
| 46 | 44, 37, 40, 45 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) ∈ ℝ) |
| 47 | 33 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∈
ℝ+) |
| 48 | 47 | rpred 13051 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∈ ℝ) |
| 49 | 32 | rpred 13051 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ ℝ) |
| 50 | 49 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑈 ∈ ℝ) |
| 51 | | simprrl 780 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) |
| 52 | 23 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑇 ∈ ℝ) |
| 53 | | min2 13206 |
. . . . . . 7
⊢ ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ≤ 𝑈) |
| 54 | 52, 50, 53 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ≤ 𝑈) |
| 55 | 46, 48, 50, 51, 54 | ltletrd 11395 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < 𝑈) |
| 56 | 8, 43 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ MetSp) |
| 57 | 56 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp) |
| 58 | 10, 35 | mscl 24400 |
. . . . . . 7
⊢ ((𝑊 ∈ MetSp ∧ 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝐵𝐷𝑦) ∈ ℝ) |
| 59 | 57, 38, 41, 58 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) ∈ ℝ) |
| 60 | | simprrr 781 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) |
| 61 | | min1 13205 |
. . . . . . 7
⊢ ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ≤ 𝑇) |
| 62 | 52, 50, 61 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ≤ 𝑇) |
| 63 | 59, 48, 52, 60, 62 | ltletrd 11395 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < 𝑇) |
| 64 | 10, 34, 35, 11, 1, 19, 36, 37, 38, 39, 40, 41, 55, 63 | ipcnlem2 25196 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) |
| 65 | 64 | expr 456 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) |
| 66 | 65 | ralrimivva 3187 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) |
| 67 | | breq2 5123 |
. . . . . 6
⊢ (𝑟 = if(𝑇 ≤ 𝑈, 𝑇, 𝑈) → ((𝐴𝐷𝑥) < 𝑟 ↔ (𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈))) |
| 68 | | breq2 5123 |
. . . . . 6
⊢ (𝑟 = if(𝑇 ≤ 𝑈, 𝑇, 𝑈) → ((𝐵𝐷𝑦) < 𝑟 ↔ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈))) |
| 69 | 67, 68 | anbi12d 632 |
. . . . 5
⊢ (𝑟 = if(𝑇 ≤ 𝑈, 𝑇, 𝑈) → (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) ↔ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) |
| 70 | 69 | imbi1d 341 |
. . . 4
⊢ (𝑟 = if(𝑇 ≤ 𝑈, 𝑇, 𝑈) → ((((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ (((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))) |
| 71 | 70 | 2ralbidv 3205 |
. . 3
⊢ (𝑟 = if(𝑇 ≤ 𝑈, 𝑇, 𝑈) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))) |
| 72 | 71 | rspcev 3601 |
. 2
⊢
((if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∈ ℝ+ ∧
∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) → ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) |
| 73 | 33, 66, 72 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) |