Proof of Theorem ipcnlem1
Step | Hyp | Ref
| Expression |
1 | | ipcn.t |
. . . 4
⊢ 𝑇 = ((𝑅 / 2) / ((𝑁‘𝐴) + 1)) |
2 | | ipcn.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
3 | 2 | rphalfcld 12713 |
. . . . 5
⊢ (𝜑 → (𝑅 / 2) ∈
ℝ+) |
4 | | ipcn.w |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ ℂPreHil) |
5 | | cphnlm 24241 |
. . . . . . . . 9
⊢ (𝑊 ∈ ℂPreHil →
𝑊 ∈
NrmMod) |
6 | 4, 5 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ NrmMod) |
7 | | nlmngp 23747 |
. . . . . . . 8
⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) |
8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ NrmGrp) |
9 | | ipcn.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
10 | | ipcn.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
11 | | ipcn.n |
. . . . . . . 8
⊢ 𝑁 = (norm‘𝑊) |
12 | 10, 11 | nmcl 23678 |
. . . . . . 7
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉) → (𝑁‘𝐴) ∈ ℝ) |
13 | 8, 9, 12 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝑁‘𝐴) ∈ ℝ) |
14 | 10, 11 | nmge0 23679 |
. . . . . . 7
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉) → 0 ≤ (𝑁‘𝐴)) |
15 | 8, 9, 14 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → 0 ≤ (𝑁‘𝐴)) |
16 | 13, 15 | ge0p1rpd 12731 |
. . . . 5
⊢ (𝜑 → ((𝑁‘𝐴) + 1) ∈
ℝ+) |
17 | 3, 16 | rpdivcld 12718 |
. . . 4
⊢ (𝜑 → ((𝑅 / 2) / ((𝑁‘𝐴) + 1)) ∈
ℝ+) |
18 | 1, 17 | eqeltrid 2843 |
. . 3
⊢ (𝜑 → 𝑇 ∈
ℝ+) |
19 | | ipcn.u |
. . . 4
⊢ 𝑈 = ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇)) |
20 | | ipcn.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
21 | 10, 11 | nmcl 23678 |
. . . . . . . 8
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → (𝑁‘𝐵) ∈ ℝ) |
22 | 8, 20, 21 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘𝐵) ∈ ℝ) |
23 | 18 | rpred 12701 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ ℝ) |
24 | 22, 23 | readdcld 10935 |
. . . . . 6
⊢ (𝜑 → ((𝑁‘𝐵) + 𝑇) ∈ ℝ) |
25 | | 0red 10909 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ) |
26 | 10, 11 | nmge0 23679 |
. . . . . . . 8
⊢ ((𝑊 ∈ NrmGrp ∧ 𝐵 ∈ 𝑉) → 0 ≤ (𝑁‘𝐵)) |
27 | 8, 20, 26 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ (𝑁‘𝐵)) |
28 | 22, 18 | ltaddrpd 12734 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘𝐵) < ((𝑁‘𝐵) + 𝑇)) |
29 | 25, 22, 24, 27, 28 | lelttrd 11063 |
. . . . . 6
⊢ (𝜑 → 0 < ((𝑁‘𝐵) + 𝑇)) |
30 | 24, 29 | elrpd 12698 |
. . . . 5
⊢ (𝜑 → ((𝑁‘𝐵) + 𝑇) ∈
ℝ+) |
31 | 3, 30 | rpdivcld 12718 |
. . . 4
⊢ (𝜑 → ((𝑅 / 2) / ((𝑁‘𝐵) + 𝑇)) ∈
ℝ+) |
32 | 19, 31 | eqeltrid 2843 |
. . 3
⊢ (𝜑 → 𝑈 ∈
ℝ+) |
33 | 18, 32 | ifcld 4502 |
. 2
⊢ (𝜑 → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∈
ℝ+) |
34 | | ipcn.h |
. . . . 5
⊢ , =
(·𝑖‘𝑊) |
35 | | ipcn.d |
. . . . 5
⊢ 𝐷 = (dist‘𝑊) |
36 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ ℂPreHil) |
37 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝐴 ∈ 𝑉) |
38 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝐵 ∈ 𝑉) |
39 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑅 ∈
ℝ+) |
40 | | simprll 775 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑥 ∈ 𝑉) |
41 | | simprlr 776 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑦 ∈ 𝑉) |
42 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ NrmGrp) |
43 | | ngpms 23662 |
. . . . . . . 8
⊢ (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp) |
44 | 42, 43 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp) |
45 | 10, 35 | mscl 23522 |
. . . . . . 7
⊢ ((𝑊 ∈ MetSp ∧ 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉) → (𝐴𝐷𝑥) ∈ ℝ) |
46 | 44, 37, 40, 45 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) ∈ ℝ) |
47 | 33 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∈
ℝ+) |
48 | 47 | rpred 12701 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∈ ℝ) |
49 | 32 | rpred 12701 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ ℝ) |
50 | 49 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑈 ∈ ℝ) |
51 | | simprrl 777 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) |
52 | 23 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑇 ∈ ℝ) |
53 | | min2 12853 |
. . . . . . 7
⊢ ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ≤ 𝑈) |
54 | 52, 50, 53 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ≤ 𝑈) |
55 | 46, 48, 50, 51, 54 | ltletrd 11065 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < 𝑈) |
56 | 8, 43 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ MetSp) |
57 | 56 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp) |
58 | 10, 35 | mscl 23522 |
. . . . . . 7
⊢ ((𝑊 ∈ MetSp ∧ 𝐵 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝐵𝐷𝑦) ∈ ℝ) |
59 | 57, 38, 41, 58 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) ∈ ℝ) |
60 | | simprrr 778 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) |
61 | | min1 12852 |
. . . . . . 7
⊢ ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ≤ 𝑇) |
62 | 52, 50, 61 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ≤ 𝑇) |
63 | 59, 48, 52, 60, 62 | ltletrd 11065 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < 𝑇) |
64 | 10, 34, 35, 11, 1, 19, 36, 37, 38, 39, 40, 41, 55, 63 | ipcnlem2 24313 |
. . . 4
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) |
65 | 64 | expr 456 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) |
66 | 65 | ralrimivva 3114 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) |
67 | | breq2 5074 |
. . . . . 6
⊢ (𝑟 = if(𝑇 ≤ 𝑈, 𝑇, 𝑈) → ((𝐴𝐷𝑥) < 𝑟 ↔ (𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈))) |
68 | | breq2 5074 |
. . . . . 6
⊢ (𝑟 = if(𝑇 ≤ 𝑈, 𝑇, 𝑈) → ((𝐵𝐷𝑦) < 𝑟 ↔ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈))) |
69 | 67, 68 | anbi12d 630 |
. . . . 5
⊢ (𝑟 = if(𝑇 ≤ 𝑈, 𝑇, 𝑈) → (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) ↔ ((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)))) |
70 | 69 | imbi1d 341 |
. . . 4
⊢ (𝑟 = if(𝑇 ≤ 𝑈, 𝑇, 𝑈) → ((((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ (((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))) |
71 | 70 | 2ralbidv 3122 |
. . 3
⊢ (𝑟 = if(𝑇 ≤ 𝑈, 𝑇, 𝑈) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))) |
72 | 71 | rspcev 3552 |
. 2
⊢
((if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∈ ℝ+ ∧
∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇 ≤ 𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) → ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) |
73 | 33, 66, 72 | syl2anc 583 |
1
⊢ (𝜑 → ∃𝑟 ∈ ℝ+ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) |