MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnlem1 Structured version   Visualization version   GIF version

Theorem ipcnlem1 25197
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.v 𝑉 = (Base‘𝑊)
ipcn.h , = (·𝑖𝑊)
ipcn.d 𝐷 = (dist‘𝑊)
ipcn.n 𝑁 = (norm‘𝑊)
ipcn.t 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
ipcn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
ipcn.w (𝜑𝑊 ∈ ℂPreHil)
ipcn.a (𝜑𝐴𝑉)
ipcn.b (𝜑𝐵𝑉)
ipcn.r (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
ipcnlem1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝐷,𝑟   𝑥,𝑦,𝜑   𝑥,𝑟,𝑦,𝑇   𝑈,𝑟,𝑥,𝑦   , ,𝑟   𝑅,𝑟   𝑉,𝑟,𝑦
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   , (𝑥,𝑦)   𝑁(𝑥,𝑦,𝑟)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑟)

Proof of Theorem ipcnlem1
StepHypRef Expression
1 ipcn.t . . . 4 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
2 ipcn.r . . . . . 6 (𝜑𝑅 ∈ ℝ+)
32rphalfcld 13063 . . . . 5 (𝜑 → (𝑅 / 2) ∈ ℝ+)
4 ipcn.w . . . . . . . . 9 (𝜑𝑊 ∈ ℂPreHil)
5 cphnlm 25124 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
64, 5syl 17 . . . . . . . 8 (𝜑𝑊 ∈ NrmMod)
7 nlmngp 24616 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
86, 7syl 17 . . . . . . 7 (𝜑𝑊 ∈ NrmGrp)
9 ipcn.a . . . . . . 7 (𝜑𝐴𝑉)
10 ipcn.v . . . . . . . 8 𝑉 = (Base‘𝑊)
11 ipcn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
1210, 11nmcl 24555 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
138, 9, 12syl2anc 584 . . . . . 6 (𝜑 → (𝑁𝐴) ∈ ℝ)
1410, 11nmge0 24556 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
158, 9, 14syl2anc 584 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐴))
1613, 15ge0p1rpd 13081 . . . . 5 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ+)
173, 16rpdivcld 13068 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝑁𝐴) + 1)) ∈ ℝ+)
181, 17eqeltrid 2838 . . 3 (𝜑𝑇 ∈ ℝ+)
19 ipcn.u . . . 4 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
20 ipcn.b . . . . . . . 8 (𝜑𝐵𝑉)
2110, 11nmcl 24555 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (𝑁𝐵) ∈ ℝ)
228, 20, 21syl2anc 584 . . . . . . 7 (𝜑 → (𝑁𝐵) ∈ ℝ)
2318rpred 13051 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
2422, 23readdcld 11264 . . . . . 6 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ)
25 0red 11238 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
2610, 11nmge0 24556 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝑁𝐵))
278, 20, 26syl2anc 584 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝐵))
2822, 18ltaddrpd 13084 . . . . . . 7 (𝜑 → (𝑁𝐵) < ((𝑁𝐵) + 𝑇))
2925, 22, 24, 27, 28lelttrd 11393 . . . . . 6 (𝜑 → 0 < ((𝑁𝐵) + 𝑇))
3024, 29elrpd 13048 . . . . 5 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ+)
313, 30rpdivcld 13068 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝑁𝐵) + 𝑇)) ∈ ℝ+)
3219, 31eqeltrid 2838 . . 3 (𝜑𝑈 ∈ ℝ+)
3318, 32ifcld 4547 . 2 (𝜑 → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
34 ipcn.h . . . . 5 , = (·𝑖𝑊)
35 ipcn.d . . . . 5 𝐷 = (dist‘𝑊)
364adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ ℂPreHil)
379adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐴𝑉)
3820adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐵𝑉)
392adantr 480 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑅 ∈ ℝ+)
40 simprll 778 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑥𝑉)
41 simprlr 779 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑦𝑉)
428adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ NrmGrp)
43 ngpms 24539 . . . . . . . 8 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
4442, 43syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp)
4510, 35mscl 24400 . . . . . . 7 ((𝑊 ∈ MetSp ∧ 𝐴𝑉𝑥𝑉) → (𝐴𝐷𝑥) ∈ ℝ)
4644, 37, 40, 45syl3anc 1373 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) ∈ ℝ)
4733adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
4847rpred 13051 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ)
4932rpred 13051 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
5049adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑈 ∈ ℝ)
51 simprrl 780 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈))
5223adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑇 ∈ ℝ)
53 min2 13206 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5452, 50, 53syl2anc 584 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5546, 48, 50, 51, 54ltletrd 11395 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < 𝑈)
568, 43syl 17 . . . . . . . 8 (𝜑𝑊 ∈ MetSp)
5756adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp)
5810, 35mscl 24400 . . . . . . 7 ((𝑊 ∈ MetSp ∧ 𝐵𝑉𝑦𝑉) → (𝐵𝐷𝑦) ∈ ℝ)
5957, 38, 41, 58syl3anc 1373 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) ∈ ℝ)
60 simprrr 781 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))
61 min1 13205 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6252, 50, 61syl2anc 584 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6359, 48, 52, 60, 62ltletrd 11395 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < 𝑇)
6410, 34, 35, 11, 1, 19, 36, 37, 38, 39, 40, 41, 55, 63ipcnlem2 25196 . . . 4 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)
6564expr 456 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
6665ralrimivva 3187 . 2 (𝜑 → ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
67 breq2 5123 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝐴𝐷𝑥) < 𝑟 ↔ (𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈)))
68 breq2 5123 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝐵𝐷𝑦) < 𝑟 ↔ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))
6967, 68anbi12d 632 . . . . 5 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) ↔ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))))
7069imbi1d 341 . . . 4 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)))
71702ralbidv 3205 . . 3 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)))
7271rspcev 3601 . 2 ((if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+ ∧ ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
7333, 66, 72syl2anc 584 1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  ifcif 4500   class class class wbr 5119  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  2c2 12295  +crp 13008  abscabs 15253  Basecbs 17228  ·𝑖cip 17276  distcds 17280  MetSpcms 24257  normcnm 24515  NrmGrpcngp 24516  NrmModcnlm 24519  ℂPreHilccph 25118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ico 13368  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-topgen 17457  df-xrs 17516  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-ghm 19196  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-staf 20799  df-srng 20800  df-lmod 20819  df-lmhm 20980  df-lvec 21061  df-sra 21131  df-rgmod 21132  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-cnfld 21316  df-phl 21586  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-xms 24259  df-ms 24260  df-nm 24521  df-ngp 24522  df-tng 24523  df-nlm 24525  df-clm 25014  df-cph 25120  df-tcph 25121
This theorem is referenced by:  ipcn  25198
  Copyright terms: Public domain W3C validator