MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnlem1 Structured version   Visualization version   GIF version

Theorem ipcnlem1 24609
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.v 𝑉 = (Base‘𝑊)
ipcn.h , = (·𝑖𝑊)
ipcn.d 𝐷 = (dist‘𝑊)
ipcn.n 𝑁 = (norm‘𝑊)
ipcn.t 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
ipcn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
ipcn.w (𝜑𝑊 ∈ ℂPreHil)
ipcn.a (𝜑𝐴𝑉)
ipcn.b (𝜑𝐵𝑉)
ipcn.r (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
ipcnlem1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝐷,𝑟   𝑥,𝑦,𝜑   𝑥,𝑟,𝑦,𝑇   𝑈,𝑟,𝑥,𝑦   , ,𝑟   𝑅,𝑟   𝑉,𝑟,𝑦
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   , (𝑥,𝑦)   𝑁(𝑥,𝑦,𝑟)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑟)

Proof of Theorem ipcnlem1
StepHypRef Expression
1 ipcn.t . . . 4 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
2 ipcn.r . . . . . 6 (𝜑𝑅 ∈ ℝ+)
32rphalfcld 12969 . . . . 5 (𝜑 → (𝑅 / 2) ∈ ℝ+)
4 ipcn.w . . . . . . . . 9 (𝜑𝑊 ∈ ℂPreHil)
5 cphnlm 24536 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
64, 5syl 17 . . . . . . . 8 (𝜑𝑊 ∈ NrmMod)
7 nlmngp 24041 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
86, 7syl 17 . . . . . . 7 (𝜑𝑊 ∈ NrmGrp)
9 ipcn.a . . . . . . 7 (𝜑𝐴𝑉)
10 ipcn.v . . . . . . . 8 𝑉 = (Base‘𝑊)
11 ipcn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
1210, 11nmcl 23972 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
138, 9, 12syl2anc 584 . . . . . 6 (𝜑 → (𝑁𝐴) ∈ ℝ)
1410, 11nmge0 23973 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
158, 9, 14syl2anc 584 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐴))
1613, 15ge0p1rpd 12987 . . . . 5 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ+)
173, 16rpdivcld 12974 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝑁𝐴) + 1)) ∈ ℝ+)
181, 17eqeltrid 2842 . . 3 (𝜑𝑇 ∈ ℝ+)
19 ipcn.u . . . 4 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
20 ipcn.b . . . . . . . 8 (𝜑𝐵𝑉)
2110, 11nmcl 23972 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (𝑁𝐵) ∈ ℝ)
228, 20, 21syl2anc 584 . . . . . . 7 (𝜑 → (𝑁𝐵) ∈ ℝ)
2318rpred 12957 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
2422, 23readdcld 11184 . . . . . 6 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ)
25 0red 11158 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
2610, 11nmge0 23973 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝑁𝐵))
278, 20, 26syl2anc 584 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝐵))
2822, 18ltaddrpd 12990 . . . . . . 7 (𝜑 → (𝑁𝐵) < ((𝑁𝐵) + 𝑇))
2925, 22, 24, 27, 28lelttrd 11313 . . . . . 6 (𝜑 → 0 < ((𝑁𝐵) + 𝑇))
3024, 29elrpd 12954 . . . . 5 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ+)
313, 30rpdivcld 12974 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝑁𝐵) + 𝑇)) ∈ ℝ+)
3219, 31eqeltrid 2842 . . 3 (𝜑𝑈 ∈ ℝ+)
3318, 32ifcld 4532 . 2 (𝜑 → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
34 ipcn.h . . . . 5 , = (·𝑖𝑊)
35 ipcn.d . . . . 5 𝐷 = (dist‘𝑊)
364adantr 481 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ ℂPreHil)
379adantr 481 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐴𝑉)
3820adantr 481 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐵𝑉)
392adantr 481 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑅 ∈ ℝ+)
40 simprll 777 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑥𝑉)
41 simprlr 778 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑦𝑉)
428adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ NrmGrp)
43 ngpms 23956 . . . . . . . 8 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
4442, 43syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp)
4510, 35mscl 23814 . . . . . . 7 ((𝑊 ∈ MetSp ∧ 𝐴𝑉𝑥𝑉) → (𝐴𝐷𝑥) ∈ ℝ)
4644, 37, 40, 45syl3anc 1371 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) ∈ ℝ)
4733adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
4847rpred 12957 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ)
4932rpred 12957 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
5049adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑈 ∈ ℝ)
51 simprrl 779 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈))
5223adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑇 ∈ ℝ)
53 min2 13109 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5452, 50, 53syl2anc 584 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5546, 48, 50, 51, 54ltletrd 11315 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < 𝑈)
568, 43syl 17 . . . . . . . 8 (𝜑𝑊 ∈ MetSp)
5756adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp)
5810, 35mscl 23814 . . . . . . 7 ((𝑊 ∈ MetSp ∧ 𝐵𝑉𝑦𝑉) → (𝐵𝐷𝑦) ∈ ℝ)
5957, 38, 41, 58syl3anc 1371 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) ∈ ℝ)
60 simprrr 780 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))
61 min1 13108 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6252, 50, 61syl2anc 584 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6359, 48, 52, 60, 62ltletrd 11315 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < 𝑇)
6410, 34, 35, 11, 1, 19, 36, 37, 38, 39, 40, 41, 55, 63ipcnlem2 24608 . . . 4 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)
6564expr 457 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
6665ralrimivva 3197 . 2 (𝜑 → ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
67 breq2 5109 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝐴𝐷𝑥) < 𝑟 ↔ (𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈)))
68 breq2 5109 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝐵𝐷𝑦) < 𝑟 ↔ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))
6967, 68anbi12d 631 . . . . 5 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) ↔ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))))
7069imbi1d 341 . . . 4 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)))
71702ralbidv 3212 . . 3 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)))
7271rspcev 3581 . 2 ((if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+ ∧ ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
7333, 66, 72syl2anc 584 1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  ifcif 4486   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  2c2 12208  +crp 12915  abscabs 15119  Basecbs 17083  ·𝑖cip 17138  distcds 17142  MetSpcms 23671  normcnm 23932  NrmGrpcngp 23933  NrmModcnlm 23936  ℂPreHilccph 24530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-topgen 17325  df-xrs 17384  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-subrg 20220  df-staf 20304  df-srng 20305  df-lmod 20324  df-lmhm 20483  df-lvec 20564  df-sra 20633  df-rgmod 20634  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-phl 21030  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-xms 23673  df-ms 23674  df-nm 23938  df-ngp 23939  df-tng 23940  df-nlm 23942  df-clm 24426  df-cph 24532  df-tcph 24533
This theorem is referenced by:  ipcn  24610
  Copyright terms: Public domain W3C validator