MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnlem1 Structured version   Visualization version   GIF version

Theorem ipcnlem1 23959
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.v 𝑉 = (Base‘𝑊)
ipcn.h , = (·𝑖𝑊)
ipcn.d 𝐷 = (dist‘𝑊)
ipcn.n 𝑁 = (norm‘𝑊)
ipcn.t 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
ipcn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
ipcn.w (𝜑𝑊 ∈ ℂPreHil)
ipcn.a (𝜑𝐴𝑉)
ipcn.b (𝜑𝐵𝑉)
ipcn.r (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
ipcnlem1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝐷,𝑟   𝑥,𝑦,𝜑   𝑥,𝑟,𝑦,𝑇   𝑈,𝑟,𝑥,𝑦   , ,𝑟   𝑅,𝑟   𝑉,𝑟,𝑦
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   , (𝑥,𝑦)   𝑁(𝑥,𝑦,𝑟)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑟)

Proof of Theorem ipcnlem1
StepHypRef Expression
1 ipcn.t . . . 4 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
2 ipcn.r . . . . . 6 (𝜑𝑅 ∈ ℝ+)
32rphalfcld 12497 . . . . 5 (𝜑 → (𝑅 / 2) ∈ ℝ+)
4 ipcn.w . . . . . . . . 9 (𝜑𝑊 ∈ ℂPreHil)
5 cphnlm 23887 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
64, 5syl 17 . . . . . . . 8 (𝜑𝑊 ∈ NrmMod)
7 nlmngp 23393 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
86, 7syl 17 . . . . . . 7 (𝜑𝑊 ∈ NrmGrp)
9 ipcn.a . . . . . . 7 (𝜑𝐴𝑉)
10 ipcn.v . . . . . . . 8 𝑉 = (Base‘𝑊)
11 ipcn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
1210, 11nmcl 23332 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
138, 9, 12syl2anc 587 . . . . . 6 (𝜑 → (𝑁𝐴) ∈ ℝ)
1410, 11nmge0 23333 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
158, 9, 14syl2anc 587 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐴))
1613, 15ge0p1rpd 12515 . . . . 5 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ+)
173, 16rpdivcld 12502 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝑁𝐴) + 1)) ∈ ℝ+)
181, 17eqeltrid 2856 . . 3 (𝜑𝑇 ∈ ℝ+)
19 ipcn.u . . . 4 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
20 ipcn.b . . . . . . . 8 (𝜑𝐵𝑉)
2110, 11nmcl 23332 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (𝑁𝐵) ∈ ℝ)
228, 20, 21syl2anc 587 . . . . . . 7 (𝜑 → (𝑁𝐵) ∈ ℝ)
2318rpred 12485 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
2422, 23readdcld 10721 . . . . . 6 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ)
25 0red 10695 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
2610, 11nmge0 23333 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝑁𝐵))
278, 20, 26syl2anc 587 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝐵))
2822, 18ltaddrpd 12518 . . . . . . 7 (𝜑 → (𝑁𝐵) < ((𝑁𝐵) + 𝑇))
2925, 22, 24, 27, 28lelttrd 10849 . . . . . 6 (𝜑 → 0 < ((𝑁𝐵) + 𝑇))
3024, 29elrpd 12482 . . . . 5 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ+)
313, 30rpdivcld 12502 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝑁𝐵) + 𝑇)) ∈ ℝ+)
3219, 31eqeltrid 2856 . . 3 (𝜑𝑈 ∈ ℝ+)
3318, 32ifcld 4469 . 2 (𝜑 → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
34 ipcn.h . . . . 5 , = (·𝑖𝑊)
35 ipcn.d . . . . 5 𝐷 = (dist‘𝑊)
364adantr 484 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ ℂPreHil)
379adantr 484 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐴𝑉)
3820adantr 484 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐵𝑉)
392adantr 484 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑅 ∈ ℝ+)
40 simprll 778 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑥𝑉)
41 simprlr 779 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑦𝑉)
428adantr 484 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ NrmGrp)
43 ngpms 23316 . . . . . . . 8 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
4442, 43syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp)
4510, 35mscl 23177 . . . . . . 7 ((𝑊 ∈ MetSp ∧ 𝐴𝑉𝑥𝑉) → (𝐴𝐷𝑥) ∈ ℝ)
4644, 37, 40, 45syl3anc 1368 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) ∈ ℝ)
4733adantr 484 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
4847rpred 12485 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ)
4932rpred 12485 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
5049adantr 484 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑈 ∈ ℝ)
51 simprrl 780 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈))
5223adantr 484 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑇 ∈ ℝ)
53 min2 12637 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5452, 50, 53syl2anc 587 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5546, 48, 50, 51, 54ltletrd 10851 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < 𝑈)
568, 43syl 17 . . . . . . . 8 (𝜑𝑊 ∈ MetSp)
5756adantr 484 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp)
5810, 35mscl 23177 . . . . . . 7 ((𝑊 ∈ MetSp ∧ 𝐵𝑉𝑦𝑉) → (𝐵𝐷𝑦) ∈ ℝ)
5957, 38, 41, 58syl3anc 1368 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) ∈ ℝ)
60 simprrr 781 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))
61 min1 12636 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6252, 50, 61syl2anc 587 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6359, 48, 52, 60, 62ltletrd 10851 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < 𝑇)
6410, 34, 35, 11, 1, 19, 36, 37, 38, 39, 40, 41, 55, 63ipcnlem2 23958 . . . 4 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)
6564expr 460 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
6665ralrimivva 3120 . 2 (𝜑 → ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
67 breq2 5040 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝐴𝐷𝑥) < 𝑟 ↔ (𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈)))
68 breq2 5040 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝐵𝐷𝑦) < 𝑟 ↔ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))
6967, 68anbi12d 633 . . . . 5 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) ↔ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))))
7069imbi1d 345 . . . 4 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)))
71702ralbidv 3128 . . 3 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)))
7271rspcev 3543 . 2 ((if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+ ∧ ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
7333, 66, 72syl2anc 587 1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3070  wrex 3071  ifcif 4423   class class class wbr 5036  cfv 6340  (class class class)co 7156  cr 10587  0cc0 10588  1c1 10589   + caddc 10591   < clt 10726  cle 10727  cmin 10921   / cdiv 11348  2c2 11742  +crp 12443  abscabs 14654  Basecbs 16555  ·𝑖cip 16642  distcds 16646  MetSpcms 23034  normcnm 23292  NrmGrpcngp 23293  NrmModcnlm 23296  ℂPreHilccph 23881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666  ax-addf 10667  ax-mulf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-q 12402  df-rp 12444  df-xneg 12561  df-xadd 12562  df-xmul 12563  df-ico 12798  df-fz 12953  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-mulr 16651  df-starv 16652  df-sca 16653  df-vsca 16654  df-ip 16655  df-tset 16656  df-ple 16657  df-ds 16659  df-unif 16660  df-0g 16787  df-topgen 16789  df-xrs 16847  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-mhm 18036  df-grp 18186  df-minusg 18187  df-sbg 18188  df-subg 18357  df-ghm 18437  df-cmn 18989  df-abl 18990  df-mgp 19322  df-ur 19334  df-ring 19381  df-cring 19382  df-oppr 19458  df-dvdsr 19476  df-unit 19477  df-invr 19507  df-dvr 19518  df-rnghom 19552  df-drng 19586  df-subrg 19615  df-staf 19698  df-srng 19699  df-lmod 19718  df-lmhm 19876  df-lvec 19957  df-sra 20026  df-rgmod 20027  df-psmet 20172  df-xmet 20173  df-met 20174  df-bl 20175  df-mopn 20176  df-cnfld 20181  df-phl 20405  df-top 21608  df-topon 21625  df-topsp 21647  df-bases 21660  df-xms 23036  df-ms 23037  df-nm 23298  df-ngp 23299  df-tng 23300  df-nlm 23302  df-clm 23778  df-cph 23883  df-tcph 23884
This theorem is referenced by:  ipcn  23960
  Copyright terms: Public domain W3C validator