| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscycl | Structured version Visualization version GIF version | ||
| Description: Sufficient and necessary conditions for a pair of functions to be a cycle (in an undirected graph): A pair of function "is" (represents) a cycle iff it is a closed path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Revised by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| iscycl | ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycls 29765 | . 2 ⊢ (Cycles‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} | |
| 2 | fveq1 6821 | . . . 4 ⊢ (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0)) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝‘0) = (𝑃‘0)) |
| 4 | simpr 484 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃) | |
| 5 | fveq2 6822 | . . . . 5 ⊢ (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹)) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (♯‘𝑓) = (♯‘𝐹)) |
| 7 | 4, 6 | fveq12d 6829 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑝‘(♯‘𝑓)) = (𝑃‘(♯‘𝐹))) |
| 8 | 3, 7 | eqeq12d 2747 | . 2 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
| 9 | relpths 29694 | . 2 ⊢ Rel (Paths‘𝐺) | |
| 10 | 1, 8, 9 | brfvopabrbr 6926 | 1 ⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 class class class wbr 5091 ‘cfv 6481 0cc0 11003 ♯chash 14234 Pathscpths 29686 Cyclesccycls 29761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-pths 29690 df-cycls 29763 |
| This theorem is referenced by: cyclprop 29769 cycliscrct 29775 cyclnumvtx 29776 cyclnspth 29777 pthisspthorcycl 29778 cyclispthon 29780 0cycl 30109 lp1cycl 30127 3cycld 30153 spthcycl 35161 subgrcycl 35167 2cycld 35170 upgrimcycls 47941 gpgprismgr4cycllem11 48135 |
| Copyright terms: Public domain | W3C validator |