MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscycl Structured version   Visualization version   GIF version

Theorem iscycl 29315
Description: Sufficient and necessary conditions for a pair of functions to be a cycle (in an undirected graph): A pair of function "is" (represents) a cycle iff it is a closed path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Revised by AV, 30-Oct-2021.)
Assertion
Ref Expression
iscycl (𝐹(Cyclesβ€˜πΊ)𝑃 ↔ (𝐹(Pathsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))

Proof of Theorem iscycl
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycls 29313 . 2 (Cyclesβ€˜πΊ) = {βŸ¨π‘“, π‘βŸ© ∣ (𝑓(Pathsβ€˜πΊ)𝑝 ∧ (π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)))}
2 fveq1 6889 . . . 4 (𝑝 = 𝑃 β†’ (π‘β€˜0) = (π‘ƒβ€˜0))
32adantl 480 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (π‘β€˜0) = (π‘ƒβ€˜0))
4 simpr 483 . . . 4 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ 𝑝 = 𝑃)
5 fveq2 6890 . . . . 5 (𝑓 = 𝐹 β†’ (β™―β€˜π‘“) = (β™―β€˜πΉ))
65adantr 479 . . . 4 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (β™―β€˜π‘“) = (β™―β€˜πΉ))
74, 6fveq12d 6897 . . 3 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ (π‘β€˜(β™―β€˜π‘“)) = (π‘ƒβ€˜(β™―β€˜πΉ)))
83, 7eqeq12d 2746 . 2 ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) β†’ ((π‘β€˜0) = (π‘β€˜(β™―β€˜π‘“)) ↔ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
9 relpths 29244 . 2 Rel (Pathsβ€˜πΊ)
101, 8, 9brfvopabrbr 6994 1 (𝐹(Cyclesβ€˜πΊ)𝑃 ↔ (𝐹(Pathsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 394   = wceq 1539   class class class wbr 5147  β€˜cfv 6542  0cc0 11112  β™―chash 14294  Pathscpths 29236  Cyclesccycls 29309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fv 6550  df-pths 29240  df-cycls 29311
This theorem is referenced by:  cyclprop  29317  cycliscrct  29323  cyclnspth  29324  cyclispthon  29325  0cycl  29654  lp1cycl  29672  3cycld  29698  pthisspthorcycl  34417  spthcycl  34418  subgrcycl  34424  2cycld  34427
  Copyright terms: Public domain W3C validator