MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscycl Structured version   Visualization version   GIF version

Theorem iscycl 29719
Description: Sufficient and necessary conditions for a pair of functions to be a cycle (in an undirected graph): A pair of function "is" (represents) a cycle iff it is a closed path. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.) (Revised by AV, 30-Oct-2021.)
Assertion
Ref Expression
iscycl (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))

Proof of Theorem iscycl
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycls 29717 . 2 (Cycles‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Paths‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}
2 fveq1 6874 . . . 4 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
32adantl 481 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝‘0) = (𝑃‘0))
4 simpr 484 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
5 fveq2 6875 . . . . 5 (𝑓 = 𝐹 → (♯‘𝑓) = (♯‘𝐹))
65adantr 480 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → (♯‘𝑓) = (♯‘𝐹))
74, 6fveq12d 6882 . . 3 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝‘(♯‘𝑓)) = (𝑃‘(♯‘𝐹)))
83, 7eqeq12d 2751 . 2 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝‘0) = (𝑝‘(♯‘𝑓)) ↔ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
9 relpths 29646 . 2 Rel (Paths‘𝐺)
101, 8, 9brfvopabrbr 6982 1 (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540   class class class wbr 5119  cfv 6530  0cc0 11127  chash 14346  Pathscpths 29638  Cyclesccycls 29713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fv 6538  df-pths 29642  df-cycls 29715
This theorem is referenced by:  cyclprop  29721  cycliscrct  29727  cyclnumvtx  29728  cyclnspth  29729  pthisspthorcycl  29730  cyclispthon  29732  0cycl  30061  lp1cycl  30079  3cycld  30105  spthcycl  35097  subgrcycl  35103  2cycld  35106  upgrimcycls  47872  gpgprismgr4cycllem11  48052
  Copyright terms: Public domain W3C validator