| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > det0 | Structured version Visualization version GIF version | ||
| Description: The cosets by the null class are in equivalence relation if and only if the null class is disjoint (which it is, see disjALTV0 38749). (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| det0 | ⊢ ( Disj ∅ ↔ EqvRel ≀ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjALTV0 38749 | . 2 ⊢ Disj ∅ | |
| 2 | 1 | detlem 38778 | 1 ⊢ ( Disj ∅ ↔ EqvRel ≀ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∅c0 4280 ≀ ccoss 38172 EqvRel weqvrel 38189 Disj wdisjALTV 38206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5231 ax-nul 5241 ax-pr 5367 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3393 df-v 3435 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5089 df-opab 5151 df-id 5508 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-coss 38405 df-refrel 38506 df-cnvrefrel 38521 df-symrel 38538 df-trrel 38568 df-eqvrel 38579 df-disjALTV 38700 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |