Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  det0 Structured version   Visualization version   GIF version

Theorem det0 38782
Description: The cosets by the null class are in equivalence relation if and only if the null class is disjoint (which it is, see disjALTV0 38749). (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
det0 ( Disj ∅ ↔ EqvRel ≀ ∅)

Proof of Theorem det0
StepHypRef Expression
1 disjALTV0 38749 . 2 Disj ∅
21detlem 38778 1 ( Disj ∅ ↔ EqvRel ≀ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  c0 4280  ccoss 38172   EqvRel weqvrel 38189   Disj wdisjALTV 38206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5231  ax-nul 5241  ax-pr 5367
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3393  df-v 3435  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5089  df-opab 5151  df-id 5508  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-coss 38405  df-refrel 38506  df-cnvrefrel 38521  df-symrel 38538  df-trrel 38568  df-eqvrel 38579  df-disjALTV 38700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator