| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > detlem | Structured version Visualization version GIF version | ||
| Description: If a relation is disjoint, then it is equivalent to the equivalent cosets of the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021.) |
| Ref | Expression |
|---|---|
| detlem.1 | ⊢ Disj 𝑅 |
| Ref | Expression |
|---|---|
| detlem | ⊢ ( Disj 𝑅 ↔ EqvRel ≀ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjim 38779 | . 2 ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) | |
| 2 | detlem.1 | . . 3 ⊢ Disj 𝑅 | |
| 3 | 2 | a1i 11 | . 2 ⊢ ( EqvRel ≀ 𝑅 → Disj 𝑅) |
| 4 | 1, 3 | impbii 209 | 1 ⊢ ( Disj 𝑅 ↔ EqvRel ≀ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ≀ ccoss 38175 EqvRel weqvrel 38192 Disj wdisjALTV 38209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-coss 38408 df-refrel 38509 df-cnvrefrel 38524 df-symrel 38541 df-trrel 38571 df-eqvrel 38582 df-disjALTV 38703 |
| This theorem is referenced by: det0 38785 detid 38791 detidres 38793 detinidres 38794 detxrnidres 38795 |
| Copyright terms: Public domain | W3C validator |