Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  detlem Structured version   Visualization version   GIF version

Theorem detlem 38781
Description: If a relation is disjoint, then it is equivalent to the equivalent cosets of the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021.)
Hypothesis
Ref Expression
detlem.1 Disj 𝑅
Assertion
Ref Expression
detlem ( Disj 𝑅 ↔ EqvRel ≀ 𝑅)

Proof of Theorem detlem
StepHypRef Expression
1 disjim 38779 . 2 ( Disj 𝑅 → EqvRel ≀ 𝑅)
2 detlem.1 . . 3 Disj 𝑅
32a1i 11 . 2 ( EqvRel ≀ 𝑅 → Disj 𝑅)
41, 3impbii 209 1 ( Disj 𝑅 ↔ EqvRel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  ccoss 38175   EqvRel weqvrel 38192   Disj wdisjALTV 38209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-coss 38408  df-refrel 38509  df-cnvrefrel 38524  df-symrel 38541  df-trrel 38571  df-eqvrel 38582  df-disjALTV 38703
This theorem is referenced by:  det0  38785  detid  38791  detidres  38793  detinidres  38794  detxrnidres  38795
  Copyright terms: Public domain W3C validator