| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > detlem | Structured version Visualization version GIF version | ||
| Description: If a relation is disjoint, then it is equivalent to the equivalent cosets of the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021.) |
| Ref | Expression |
|---|---|
| detlem.1 | ⊢ Disj 𝑅 |
| Ref | Expression |
|---|---|
| detlem | ⊢ ( Disj 𝑅 ↔ EqvRel ≀ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjim 38885 | . 2 ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) | |
| 2 | detlem.1 | . . 3 ⊢ Disj 𝑅 | |
| 3 | 2 | a1i 11 | . 2 ⊢ ( EqvRel ≀ 𝑅 → Disj 𝑅) |
| 4 | 1, 3 | impbii 209 | 1 ⊢ ( Disj 𝑅 ↔ EqvRel ≀ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ≀ ccoss 38228 EqvRel weqvrel 38245 Disj wdisjALTV 38262 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-coss 38519 df-refrel 38610 df-cnvrefrel 38625 df-symrel 38642 df-trrel 38676 df-eqvrel 38687 df-disjALTV 38809 |
| This theorem is referenced by: det0 38891 detid 38897 detidres 38899 detinidres 38900 detxrnidres 38901 |
| Copyright terms: Public domain | W3C validator |