![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > detxrnidres | Structured version Visualization version GIF version |
Description: The cosets by the range Cartesian product with the restricted identity relation are in equivalence relation if and only if the range Cartesian product with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
detxrnidres | ⊢ ( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjALTVxrnidres 38360 | . 2 ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) | |
2 | 1 | detlem 38385 | 1 ⊢ ( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 I cid 5575 ↾ cres 5680 ⋉ cxrn 37778 ≀ ccoss 37779 EqvRel weqvrel 37796 Disj wdisjALTV 37813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fo 6555 df-fv 6557 df-1st 7994 df-2nd 7995 df-ec 8727 df-xrn 37973 df-coss 38013 df-refrel 38114 df-cnvrefrel 38129 df-symrel 38146 df-trrel 38176 df-eqvrel 38187 df-funALTV 38284 df-disjALTV 38307 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |