Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  detxrnidres Structured version   Visualization version   GIF version

Theorem detxrnidres 38755
Description: The cosets by the range Cartesian product with the restricted identity relation are in equivalence relation if and only if the range Cartesian product with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
detxrnidres ( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)))

Proof of Theorem detxrnidres
StepHypRef Expression
1 disjALTVxrnidres 38716 . 2 Disj (𝑅 ⋉ ( I ↾ 𝐴))
21detlem 38741 1 ( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 206   I cid 5592  cres 5702  cxrn 38136  ccoss 38137   EqvRel weqvrel 38154   Disj wdisjALTV 38171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-fo 6581  df-fv 6583  df-1st 8032  df-2nd 8033  df-ec 8767  df-xrn 38329  df-coss 38369  df-refrel 38470  df-cnvrefrel 38485  df-symrel 38502  df-trrel 38532  df-eqvrel 38543  df-funALTV 38640  df-disjALTV 38663
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator