| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > detxrnidres | Structured version Visualization version GIF version | ||
| Description: The cosets by the range Cartesian product with the restricted identity relation are in equivalence relation if and only if the range Cartesian product with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| Ref | Expression |
|---|---|
| detxrnidres | ⊢ ( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjALTVxrnidres 38753 | . 2 ⊢ Disj (𝑅 ⋉ ( I ↾ 𝐴)) | |
| 2 | 1 | detlem 38778 | 1 ⊢ ( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 I cid 5507 ↾ cres 5615 ⋉ cxrn 38171 ≀ ccoss 38172 EqvRel weqvrel 38189 Disj wdisjALTV 38206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5231 ax-nul 5241 ax-pr 5367 ax-un 7662 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3393 df-v 3435 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5089 df-opab 5151 df-mpt 5170 df-id 5508 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fo 6482 df-fv 6484 df-1st 7915 df-2nd 7916 df-ec 8618 df-xrn 38356 df-coss 38405 df-refrel 38506 df-cnvrefrel 38521 df-symrel 38538 df-trrel 38568 df-eqvrel 38579 df-funALTV 38677 df-disjALTV 38700 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |