Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  detxrnidres Structured version   Visualization version   GIF version

Theorem detxrnidres 38399
Description: The cosets by the range Cartesian product with the restricted identity relation are in equivalence relation if and only if the range Cartesian product with the restricted identity relation is disjoint. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
detxrnidres ( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)))

Proof of Theorem detxrnidres
StepHypRef Expression
1 disjALTVxrnidres 38360 . 2 Disj (𝑅 ⋉ ( I ↾ 𝐴))
21detlem 38385 1 ( Disj (𝑅 ⋉ ( I ↾ 𝐴)) ↔ EqvRel ≀ (𝑅 ⋉ ( I ↾ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 205   I cid 5575  cres 5680  cxrn 37778  ccoss 37779   EqvRel weqvrel 37796   Disj wdisjALTV 37813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fo 6555  df-fv 6557  df-1st 7994  df-2nd 7995  df-ec 8727  df-xrn 37973  df-coss 38013  df-refrel 38114  df-cnvrefrel 38129  df-symrel 38146  df-trrel 38176  df-eqvrel 38187  df-funALTV 38284  df-disjALTV 38307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator