MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv2 Structured version   Visualization version   GIF version

Theorem funfv2 6997
Description: The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
funfv2 (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem funfv2
StepHypRef Expression
1 funfv 6996 . 2 (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴}))
2 funrel 6585 . . . 4 (Fun 𝐹 → Rel 𝐹)
3 relimasn 6105 . . . 4 (Rel 𝐹 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
42, 3syl 17 . . 3 (Fun 𝐹 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
54unieqd 4925 . 2 (Fun 𝐹 (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
61, 5eqtrd 2775 1 (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {cab 2712  {csn 4631   cuni 4912   class class class wbr 5148  cima 5692  Rel wrel 5694  Fun wfun 6557  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571
This theorem is referenced by:  funfv2f  6998
  Copyright terms: Public domain W3C validator