MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv2 Structured version   Visualization version   GIF version

Theorem funfv2 6972
Description: The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
funfv2 (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem funfv2
StepHypRef Expression
1 funfv 6971 . 2 (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴}))
2 funrel 6558 . . . 4 (Fun 𝐹 → Rel 𝐹)
3 relimasn 6077 . . . 4 (Rel 𝐹 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
42, 3syl 17 . . 3 (Fun 𝐹 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
54unieqd 4901 . 2 (Fun 𝐹 (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
61, 5eqtrd 2771 1 (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {cab 2714  {csn 4606   cuni 4888   class class class wbr 5124  cima 5662  Rel wrel 5664  Fun wfun 6530  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544
This theorem is referenced by:  funfv2f  6973
  Copyright terms: Public domain W3C validator