Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfv2 | Structured version Visualization version GIF version |
Description: The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by NM, 22-May-1998.) |
Ref | Expression |
---|---|
funfv2 | ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfv 6837 | . 2 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ (𝐹 “ {𝐴})) | |
2 | funrel 6435 | . . . 4 ⊢ (Fun 𝐹 → Rel 𝐹) | |
3 | relimasn 5981 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (Fun 𝐹 → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) |
5 | 4 | unieqd 4850 | . 2 ⊢ (Fun 𝐹 → ∪ (𝐹 “ {𝐴}) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
6 | 1, 5 | eqtrd 2778 | 1 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cab 2715 {csn 4558 ∪ cuni 4836 class class class wbr 5070 “ cima 5583 Rel wrel 5585 Fun wfun 6412 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: funfv2f 6839 |
Copyright terms: Public domain | W3C validator |