MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv2 Structured version   Visualization version   GIF version

Theorem funfv2 6910
Description: The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
funfv2 (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem funfv2
StepHypRef Expression
1 funfv 6909 . 2 (Fun 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴}))
2 funrel 6498 . . . 4 (Fun 𝐹 → Rel 𝐹)
3 relimasn 6034 . . . 4 (Rel 𝐹 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
42, 3syl 17 . . 3 (Fun 𝐹 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
54unieqd 4872 . 2 (Fun 𝐹 (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
61, 5eqtrd 2766 1 (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  {cab 2709  {csn 4576   cuni 4859   class class class wbr 5091  cima 5619  Rel wrel 5621  Fun wfun 6475  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  funfv2f  6911
  Copyright terms: Public domain W3C validator