| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isumclim3 | Structured version Visualization version GIF version | ||
| Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| isumclim3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| isumclim3.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| isumclim3.3 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
| isumclim3.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
| isumclim3.5 | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) |
| Ref | Expression |
|---|---|
| isumclim3 | ⊢ (𝜑 → 𝐹 ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumclim3.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
| 2 | climdm 15456 | . . 3 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
| 4 | sumfc 15611 | . . . 4 ⊢ Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ 𝑍 𝐴 | |
| 5 | isumclim3.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | isumclim3.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | eqidd 2732 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
| 8 | isumclim3.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
| 9 | 8 | fmpttd 7043 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴):𝑍⟶ℂ) |
| 10 | 9 | ffvelcdmda 7012 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
| 11 | 5, 6, 7, 10 | isum 15621 | . . . 4 ⊢ (𝜑 → Σ𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)))) |
| 12 | 4, 11 | eqtr3id 2780 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)))) |
| 13 | seqex 13905 | . . . . . . 7 ⊢ seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V) |
| 15 | isumclim3.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴) | |
| 16 | fvres 6836 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ (𝑀...𝑗) → (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
| 17 | fzssuz 13460 | . . . . . . . . . . . . . 14 ⊢ (𝑀...𝑗) ⊆ (ℤ≥‘𝑀) | |
| 18 | 17, 5 | sseqtrri 3979 | . . . . . . . . . . . . 13 ⊢ (𝑀...𝑗) ⊆ 𝑍 |
| 19 | resmpt 5981 | . . . . . . . . . . . . 13 ⊢ ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴) |
| 21 | 20 | fveq1i 6818 | . . . . . . . . . . 11 ⊢ (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
| 22 | 16, 21 | eqtr3di 2781 | . . . . . . . . . 10 ⊢ (𝑚 ∈ (𝑀...𝑗) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)) |
| 23 | 22 | sumeq2i 15600 | . . . . . . . . 9 ⊢ Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
| 24 | sumfc 15611 | . . . . . . . . 9 ⊢ Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴 | |
| 25 | 23, 24 | eqtri 2754 | . . . . . . . 8 ⊢ Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴 |
| 26 | eqidd 2732 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
| 27 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
| 28 | 27, 5 | eleqtrdi 2841 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 29 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝜑) | |
| 30 | elfzuz 13415 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ (ℤ≥‘𝑀)) | |
| 31 | 30, 5 | eleqtrrdi 2842 | . . . . . . . . . 10 ⊢ (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ 𝑍) |
| 32 | 29, 31, 10 | syl2an 596 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
| 33 | 26, 28, 32 | fsumser 15632 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗)) |
| 34 | 25, 33 | eqtr3id 2780 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → Σ𝑘 ∈ (𝑀...𝑗)𝐴 = (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗)) |
| 35 | 15, 34 | eqtr2d 2767 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗) = (𝐹‘𝑗)) |
| 36 | 5, 14, 1, 6, 35 | climeq 15469 | . . . . 5 ⊢ (𝜑 → (seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑥)) |
| 37 | 36 | iotabidv 6460 | . . . 4 ⊢ (𝜑 → (℩𝑥seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) = (℩𝑥𝐹 ⇝ 𝑥)) |
| 38 | df-fv 6484 | . . . 4 ⊢ ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴))) = (℩𝑥seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) | |
| 39 | df-fv 6484 | . . . 4 ⊢ ( ⇝ ‘𝐹) = (℩𝑥𝐹 ⇝ 𝑥) | |
| 40 | 37, 38, 39 | 3eqtr4g 2791 | . . 3 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴))) = ( ⇝ ‘𝐹)) |
| 41 | 12, 40 | eqtrd 2766 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘𝐹)) |
| 42 | 3, 41 | breqtrrd 5114 | 1 ⊢ (𝜑 → 𝐹 ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5086 ↦ cmpt 5167 dom cdm 5611 ↾ cres 5613 ℩cio 6430 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 + caddc 11004 ℤcz 12463 ℤ≥cuz 12727 ...cfz 13402 seqcseq 13903 ⇝ cli 15386 Σcsu 15588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-sum 15589 |
| This theorem is referenced by: esumcvg 34091 |
| Copyright terms: Public domain | W3C validator |