MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumclim3 Structured version   Visualization version   GIF version

Theorem isumclim3 15795
Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumclim3.1 𝑍 = (ℤ𝑀)
isumclim3.2 (𝜑𝑀 ∈ ℤ)
isumclim3.3 (𝜑𝐹 ∈ dom ⇝ )
isumclim3.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumclim3.5 ((𝜑𝑗𝑍) → (𝐹𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
Assertion
Ref Expression
isumclim3 (𝜑𝐹 ⇝ Σ𝑘𝑍 𝐴)
Distinct variable groups:   𝐴,𝑗   𝑗,𝑘,𝑀   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑘)

Proof of Theorem isumclim3
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumclim3.3 . . 3 (𝜑𝐹 ∈ dom ⇝ )
2 climdm 15590 . . 3 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
31, 2sylib 218 . 2 (𝜑𝐹 ⇝ ( ⇝ ‘𝐹))
4 sumfc 15745 . . . 4 Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = Σ𝑘𝑍 𝐴
5 isumclim3.1 . . . . 5 𝑍 = (ℤ𝑀)
6 isumclim3.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
7 eqidd 2738 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
8 isumclim3.4 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
98fmpttd 7135 . . . . . 6 (𝜑 → (𝑘𝑍𝐴):𝑍⟶ℂ)
109ffvelcdmda 7104 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
115, 6, 7, 10isum 15755 . . . 4 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))))
124, 11eqtr3id 2791 . . 3 (𝜑 → Σ𝑘𝑍 𝐴 = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))))
13 seqex 14044 . . . . . . 7 seq𝑀( + , (𝑘𝑍𝐴)) ∈ V
1413a1i 11 . . . . . 6 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)) ∈ V)
15 isumclim3.5 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
16 fvres 6925 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
17 fzssuz 13605 . . . . . . . . . . . . . 14 (𝑀...𝑗) ⊆ (ℤ𝑀)
1817, 5sseqtrri 4033 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ 𝑍
19 resmpt 6055 . . . . . . . . . . . . 13 ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴))
2018, 19ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)
2120fveq1i 6907 . . . . . . . . . . 11 (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
2216, 21eqtr3di 2792 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚))
2322sumeq2i 15734 . . . . . . . . 9 Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
24 sumfc 15745 . . . . . . . . 9 Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴
2523, 24eqtri 2765 . . . . . . . 8 Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴
26 eqidd 2738 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
27 simpr 484 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
2827, 5eleqtrdi 2851 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
29 simpl 482 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝜑)
30 elfzuz 13560 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ (ℤ𝑀))
3130, 5eleqtrrdi 2852 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → 𝑚𝑍)
3229, 31, 10syl2an 596 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3326, 28, 32fsumser 15766 . . . . . . . 8 ((𝜑𝑗𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗))
3425, 33eqtr3id 2791 . . . . . . 7 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)𝐴 = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗))
3515, 34eqtr2d 2778 . . . . . 6 ((𝜑𝑗𝑍) → (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗) = (𝐹𝑗))
365, 14, 1, 6, 35climeq 15603 . . . . 5 (𝜑 → (seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥𝐹𝑥))
3736iotabidv 6545 . . . 4 (𝜑 → (℩𝑥seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥) = (℩𝑥𝐹𝑥))
38 df-fv 6569 . . . 4 ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥)
39 df-fv 6569 . . . 4 ( ⇝ ‘𝐹) = (℩𝑥𝐹𝑥)
4037, 38, 393eqtr4g 2802 . . 3 (𝜑 → ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))) = ( ⇝ ‘𝐹))
4112, 40eqtrd 2777 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = ( ⇝ ‘𝐹))
423, 41breqtrrd 5171 1 (𝜑𝐹 ⇝ Σ𝑘𝑍 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951   class class class wbr 5143  cmpt 5225  dom cdm 5685  cres 5687  cio 6512  cfv 6561  (class class class)co 7431  cc 11153   + caddc 11158  cz 12613  cuz 12878  ...cfz 13547  seqcseq 14042  cli 15520  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  esumcvg  34087
  Copyright terms: Public domain W3C validator