MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumclim3 Structured version   Visualization version   GIF version

Theorem isumclim3 15323
Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumclim3.1 𝑍 = (ℤ𝑀)
isumclim3.2 (𝜑𝑀 ∈ ℤ)
isumclim3.3 (𝜑𝐹 ∈ dom ⇝ )
isumclim3.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumclim3.5 ((𝜑𝑗𝑍) → (𝐹𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
Assertion
Ref Expression
isumclim3 (𝜑𝐹 ⇝ Σ𝑘𝑍 𝐴)
Distinct variable groups:   𝐴,𝑗   𝑗,𝑘,𝑀   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑘)

Proof of Theorem isumclim3
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumclim3.3 . . 3 (𝜑𝐹 ∈ dom ⇝ )
2 climdm 15115 . . 3 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
31, 2sylib 221 . 2 (𝜑𝐹 ⇝ ( ⇝ ‘𝐹))
4 sumfc 15273 . . . 4 Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = Σ𝑘𝑍 𝐴
5 isumclim3.1 . . . . 5 𝑍 = (ℤ𝑀)
6 isumclim3.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
7 eqidd 2738 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
8 isumclim3.4 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
98fmpttd 6932 . . . . . 6 (𝜑 → (𝑘𝑍𝐴):𝑍⟶ℂ)
109ffvelrnda 6904 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
115, 6, 7, 10isum 15283 . . . 4 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))))
124, 11eqtr3id 2792 . . 3 (𝜑 → Σ𝑘𝑍 𝐴 = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))))
13 seqex 13576 . . . . . . 7 seq𝑀( + , (𝑘𝑍𝐴)) ∈ V
1413a1i 11 . . . . . 6 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)) ∈ V)
15 isumclim3.5 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
16 fvres 6736 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
17 fzssuz 13153 . . . . . . . . . . . . . 14 (𝑀...𝑗) ⊆ (ℤ𝑀)
1817, 5sseqtrri 3938 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ 𝑍
19 resmpt 5905 . . . . . . . . . . . . 13 ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴))
2018, 19ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)
2120fveq1i 6718 . . . . . . . . . . 11 (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
2216, 21eqtr3di 2793 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚))
2322sumeq2i 15263 . . . . . . . . 9 Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
24 sumfc 15273 . . . . . . . . 9 Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴
2523, 24eqtri 2765 . . . . . . . 8 Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴
26 eqidd 2738 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
27 simpr 488 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
2827, 5eleqtrdi 2848 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
29 simpl 486 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝜑)
30 elfzuz 13108 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ (ℤ𝑀))
3130, 5eleqtrrdi 2849 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → 𝑚𝑍)
3229, 31, 10syl2an 599 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3326, 28, 32fsumser 15294 . . . . . . . 8 ((𝜑𝑗𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗))
3425, 33eqtr3id 2792 . . . . . . 7 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)𝐴 = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗))
3515, 34eqtr2d 2778 . . . . . 6 ((𝜑𝑗𝑍) → (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗) = (𝐹𝑗))
365, 14, 1, 6, 35climeq 15128 . . . . 5 (𝜑 → (seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥𝐹𝑥))
3736iotabidv 6364 . . . 4 (𝜑 → (℩𝑥seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥) = (℩𝑥𝐹𝑥))
38 df-fv 6388 . . . 4 ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥)
39 df-fv 6388 . . . 4 ( ⇝ ‘𝐹) = (℩𝑥𝐹𝑥)
4037, 38, 393eqtr4g 2803 . . 3 (𝜑 → ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))) = ( ⇝ ‘𝐹))
4112, 40eqtrd 2777 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = ( ⇝ ‘𝐹))
423, 41breqtrrd 5081 1 (𝜑𝐹 ⇝ Σ𝑘𝑍 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  wss 3866   class class class wbr 5053  cmpt 5135  dom cdm 5551  cres 5553  cio 6336  cfv 6380  (class class class)co 7213  cc 10727   + caddc 10732  cz 12176  cuz 12438  ...cfz 13095  seqcseq 13574  cli 15045  Σcsu 15249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-sum 15250
This theorem is referenced by:  esumcvg  31766
  Copyright terms: Public domain W3C validator