MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumclim3 Structured version   Visualization version   GIF version

Theorem isumclim3 15471
Description: The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumclim3.1 𝑍 = (ℤ𝑀)
isumclim3.2 (𝜑𝑀 ∈ ℤ)
isumclim3.3 (𝜑𝐹 ∈ dom ⇝ )
isumclim3.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumclim3.5 ((𝜑𝑗𝑍) → (𝐹𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
Assertion
Ref Expression
isumclim3 (𝜑𝐹 ⇝ Σ𝑘𝑍 𝐴)
Distinct variable groups:   𝐴,𝑗   𝑗,𝑘,𝑀   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘   𝑗,𝐹
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑘)

Proof of Theorem isumclim3
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumclim3.3 . . 3 (𝜑𝐹 ∈ dom ⇝ )
2 climdm 15263 . . 3 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
31, 2sylib 217 . 2 (𝜑𝐹 ⇝ ( ⇝ ‘𝐹))
4 sumfc 15421 . . . 4 Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = Σ𝑘𝑍 𝐴
5 isumclim3.1 . . . . 5 𝑍 = (ℤ𝑀)
6 isumclim3.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
7 eqidd 2739 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
8 isumclim3.4 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
98fmpttd 6989 . . . . . 6 (𝜑 → (𝑘𝑍𝐴):𝑍⟶ℂ)
109ffvelrnda 6961 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
115, 6, 7, 10isum 15431 . . . 4 (𝜑 → Σ𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))))
124, 11eqtr3id 2792 . . 3 (𝜑 → Σ𝑘𝑍 𝐴 = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))))
13 seqex 13723 . . . . . . 7 seq𝑀( + , (𝑘𝑍𝐴)) ∈ V
1413a1i 11 . . . . . 6 (𝜑 → seq𝑀( + , (𝑘𝑍𝐴)) ∈ V)
15 isumclim3.5 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) = Σ𝑘 ∈ (𝑀...𝑗)𝐴)
16 fvres 6793 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
17 fzssuz 13297 . . . . . . . . . . . . . 14 (𝑀...𝑗) ⊆ (ℤ𝑀)
1817, 5sseqtrri 3958 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ 𝑍
19 resmpt 5945 . . . . . . . . . . . . 13 ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴))
2018, 19ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)
2120fveq1i 6775 . . . . . . . . . . 11 (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
2216, 21eqtr3di 2793 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚))
2322sumeq2i 15411 . . . . . . . . 9 Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
24 sumfc 15421 . . . . . . . . 9 Σ𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴
2523, 24eqtri 2766 . . . . . . . 8 Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑗)𝐴
26 eqidd 2739 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
27 simpr 485 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
2827, 5eleqtrdi 2849 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
29 simpl 483 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝜑)
30 elfzuz 13252 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ (ℤ𝑀))
3130, 5eleqtrrdi 2850 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → 𝑚𝑍)
3229, 31, 10syl2an 596 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3326, 28, 32fsumser 15442 . . . . . . . 8 ((𝜑𝑗𝑍) → Σ𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗))
3425, 33eqtr3id 2792 . . . . . . 7 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)𝐴 = (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗))
3515, 34eqtr2d 2779 . . . . . 6 ((𝜑𝑗𝑍) → (seq𝑀( + , (𝑘𝑍𝐴))‘𝑗) = (𝐹𝑗))
365, 14, 1, 6, 35climeq 15276 . . . . 5 (𝜑 → (seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥𝐹𝑥))
3736iotabidv 6417 . . . 4 (𝜑 → (℩𝑥seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥) = (℩𝑥𝐹𝑥))
38 df-fv 6441 . . . 4 ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐴)) ⇝ 𝑥)
39 df-fv 6441 . . . 4 ( ⇝ ‘𝐹) = (℩𝑥𝐹𝑥)
4037, 38, 393eqtr4g 2803 . . 3 (𝜑 → ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐴))) = ( ⇝ ‘𝐹))
4112, 40eqtrd 2778 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = ( ⇝ ‘𝐹))
423, 41breqtrrd 5102 1 (𝜑𝐹 ⇝ Σ𝑘𝑍 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  cio 6389  cfv 6433  (class class class)co 7275  cc 10869   + caddc 10874  cz 12319  cuz 12582  ...cfz 13239  seqcseq 13721  cli 15193  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  esumcvg  32054
  Copyright terms: Public domain W3C validator