MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumshft Structured version   Visualization version   GIF version

Theorem isumshft 15781
Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumshft.1 𝑍 = (β„€β‰₯β€˜π‘€)
isumshft.2 π‘Š = (β„€β‰₯β€˜(𝑀 + 𝐾))
isumshft.3 (𝑗 = (𝐾 + π‘˜) β†’ 𝐴 = 𝐡)
isumshft.4 (πœ‘ β†’ 𝐾 ∈ β„€)
isumshft.5 (πœ‘ β†’ 𝑀 ∈ β„€)
isumshft.6 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ 𝐴 ∈ β„‚)
Assertion
Ref Expression
isumshft (πœ‘ β†’ Σ𝑗 ∈ π‘Š 𝐴 = Ξ£π‘˜ ∈ 𝑍 𝐡)
Distinct variable groups:   𝐴,π‘˜   𝑗,π‘˜,𝐾   πœ‘,𝑗,π‘˜   𝑗,π‘Š,π‘˜   𝐡,𝑗   π‘˜,𝑍
Allowed substitution hints:   𝐴(𝑗)   𝐡(π‘˜)   𝑀(𝑗,π‘˜)   𝑍(𝑗)

Proof of Theorem isumshft
Dummy variables π‘š 𝑛 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumshft.5 . . . . . . . . 9 (πœ‘ β†’ 𝑀 ∈ β„€)
2 isumshft.4 . . . . . . . . 9 (πœ‘ β†’ 𝐾 ∈ β„€)
31, 2zaddcld 12666 . . . . . . . 8 (πœ‘ β†’ (𝑀 + 𝐾) ∈ β„€)
4 isumshft.2 . . . . . . . . . 10 π‘Š = (β„€β‰₯β€˜(𝑀 + 𝐾))
54eleq2i 2825 . . . . . . . . 9 (π‘š ∈ π‘Š ↔ π‘š ∈ (β„€β‰₯β€˜(𝑀 + 𝐾)))
62zcnd 12663 . . . . . . . . . . 11 (πœ‘ β†’ 𝐾 ∈ β„‚)
7 eluzelcn 12830 . . . . . . . . . . . 12 (π‘š ∈ (β„€β‰₯β€˜(𝑀 + 𝐾)) β†’ π‘š ∈ β„‚)
87, 4eleq2s 2851 . . . . . . . . . . 11 (π‘š ∈ π‘Š β†’ π‘š ∈ β„‚)
9 isumshft.1 . . . . . . . . . . . . . 14 𝑍 = (β„€β‰₯β€˜π‘€)
109fvexi 6902 . . . . . . . . . . . . 13 𝑍 ∈ V
1110mptex 7221 . . . . . . . . . . . 12 (π‘˜ ∈ 𝑍 ↦ 𝐡) ∈ V
1211shftval 15017 . . . . . . . . . . 11 ((𝐾 ∈ β„‚ ∧ π‘š ∈ β„‚) β†’ (((π‘˜ ∈ 𝑍 ↦ 𝐡) shift 𝐾)β€˜π‘š) = ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜(π‘š βˆ’ 𝐾)))
136, 8, 12syl2an 596 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ π‘Š) β†’ (((π‘˜ ∈ 𝑍 ↦ 𝐡) shift 𝐾)β€˜π‘š) = ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜(π‘š βˆ’ 𝐾)))
14 simpr 485 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ π‘˜ ∈ 𝑍)
15 eqid 2732 . . . . . . . . . . . . . . . . 17 (π‘˜ ∈ 𝑍 ↦ 𝐡) = (π‘˜ ∈ 𝑍 ↦ 𝐡)
1615fvmpt2i 7005 . . . . . . . . . . . . . . . 16 (π‘˜ ∈ 𝑍 β†’ ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘˜) = ( I β€˜π΅))
1714, 16syl 17 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘˜) = ( I β€˜π΅))
18 eluzelcn 12830 . . . . . . . . . . . . . . . . . . . 20 (π‘˜ ∈ (β„€β‰₯β€˜π‘€) β†’ π‘˜ ∈ β„‚)
1918, 9eleq2s 2851 . . . . . . . . . . . . . . . . . . 19 (π‘˜ ∈ 𝑍 β†’ π‘˜ ∈ β„‚)
20 addcom 11396 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ β„‚ ∧ π‘˜ ∈ β„‚) β†’ (𝐾 + π‘˜) = (π‘˜ + 𝐾))
216, 19, 20syl2an 596 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (𝐾 + π‘˜) = (π‘˜ + 𝐾))
22 id 22 . . . . . . . . . . . . . . . . . . . 20 (π‘˜ ∈ 𝑍 β†’ π‘˜ ∈ 𝑍)
2322, 9eleqtrdi 2843 . . . . . . . . . . . . . . . . . . 19 (π‘˜ ∈ 𝑍 β†’ π‘˜ ∈ (β„€β‰₯β€˜π‘€))
24 eluzadd 12847 . . . . . . . . . . . . . . . . . . 19 ((π‘˜ ∈ (β„€β‰₯β€˜π‘€) ∧ 𝐾 ∈ β„€) β†’ (π‘˜ + 𝐾) ∈ (β„€β‰₯β€˜(𝑀 + 𝐾)))
2523, 2, 24syl2anr 597 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (π‘˜ + 𝐾) ∈ (β„€β‰₯β€˜(𝑀 + 𝐾)))
2621, 25eqeltrd 2833 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (𝐾 + π‘˜) ∈ (β„€β‰₯β€˜(𝑀 + 𝐾)))
2726, 4eleqtrrdi 2844 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (𝐾 + π‘˜) ∈ π‘Š)
28 isumshft.3 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝐾 + π‘˜) β†’ 𝐴 = 𝐡)
29 eqid 2732 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ π‘Š ↦ 𝐴) = (𝑗 ∈ π‘Š ↦ 𝐴)
3028, 29fvmpti 6994 . . . . . . . . . . . . . . . 16 ((𝐾 + π‘˜) ∈ π‘Š β†’ ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + π‘˜)) = ( I β€˜π΅))
3127, 30syl 17 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + π‘˜)) = ( I β€˜π΅))
3217, 31eqtr4d 2775 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘˜) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + π‘˜)))
3332ralrimiva 3146 . . . . . . . . . . . . 13 (πœ‘ β†’ βˆ€π‘˜ ∈ 𝑍 ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘˜) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + π‘˜)))
34 nffvmpt1 6899 . . . . . . . . . . . . . . 15 β„²π‘˜((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›)
3534nfeq1 2918 . . . . . . . . . . . . . 14 β„²π‘˜((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + 𝑛))
36 fveq2 6888 . . . . . . . . . . . . . . 15 (π‘˜ = 𝑛 β†’ ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘˜) = ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›))
37 oveq2 7413 . . . . . . . . . . . . . . . 16 (π‘˜ = 𝑛 β†’ (𝐾 + π‘˜) = (𝐾 + 𝑛))
3837fveq2d 6892 . . . . . . . . . . . . . . 15 (π‘˜ = 𝑛 β†’ ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + π‘˜)) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + 𝑛)))
3936, 38eqeq12d 2748 . . . . . . . . . . . . . 14 (π‘˜ = 𝑛 β†’ (((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘˜) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + π‘˜)) ↔ ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + 𝑛))))
4035, 39rspc 3600 . . . . . . . . . . . . 13 (𝑛 ∈ 𝑍 β†’ (βˆ€π‘˜ ∈ 𝑍 ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘˜) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + π‘˜)) β†’ ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + 𝑛))))
4133, 40mpan9 507 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + 𝑛)))
4241ralrimiva 3146 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘› ∈ 𝑍 ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + 𝑛)))
431adantr 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘š ∈ π‘Š) β†’ 𝑀 ∈ β„€)
442adantr 481 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘š ∈ π‘Š) β†’ 𝐾 ∈ β„€)
45 simpr 485 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘š ∈ π‘Š) β†’ π‘š ∈ π‘Š)
4645, 4eleqtrdi 2843 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘š ∈ π‘Š) β†’ π‘š ∈ (β„€β‰₯β€˜(𝑀 + 𝐾)))
47 eluzsub 12848 . . . . . . . . . . . . 13 ((𝑀 ∈ β„€ ∧ 𝐾 ∈ β„€ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑀 + 𝐾))) β†’ (π‘š βˆ’ 𝐾) ∈ (β„€β‰₯β€˜π‘€))
4843, 44, 46, 47syl3anc 1371 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘š ∈ π‘Š) β†’ (π‘š βˆ’ 𝐾) ∈ (β„€β‰₯β€˜π‘€))
4948, 9eleqtrrdi 2844 . . . . . . . . . . 11 ((πœ‘ ∧ π‘š ∈ π‘Š) β†’ (π‘š βˆ’ 𝐾) ∈ 𝑍)
50 fveq2 6888 . . . . . . . . . . . . 13 (𝑛 = (π‘š βˆ’ 𝐾) β†’ ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›) = ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜(π‘š βˆ’ 𝐾)))
51 oveq2 7413 . . . . . . . . . . . . . 14 (𝑛 = (π‘š βˆ’ 𝐾) β†’ (𝐾 + 𝑛) = (𝐾 + (π‘š βˆ’ 𝐾)))
5251fveq2d 6892 . . . . . . . . . . . . 13 (𝑛 = (π‘š βˆ’ 𝐾) β†’ ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + 𝑛)) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + (π‘š βˆ’ 𝐾))))
5350, 52eqeq12d 2748 . . . . . . . . . . . 12 (𝑛 = (π‘š βˆ’ 𝐾) β†’ (((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + 𝑛)) ↔ ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜(π‘š βˆ’ 𝐾)) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + (π‘š βˆ’ 𝐾)))))
5453rspccva 3611 . . . . . . . . . . 11 ((βˆ€π‘› ∈ 𝑍 ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + 𝑛)) ∧ (π‘š βˆ’ 𝐾) ∈ 𝑍) β†’ ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜(π‘š βˆ’ 𝐾)) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + (π‘š βˆ’ 𝐾))))
5542, 49, 54syl2an2r 683 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ π‘Š) β†’ ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜(π‘š βˆ’ 𝐾)) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + (π‘š βˆ’ 𝐾))))
56 pncan3 11464 . . . . . . . . . . . 12 ((𝐾 ∈ β„‚ ∧ π‘š ∈ β„‚) β†’ (𝐾 + (π‘š βˆ’ 𝐾)) = π‘š)
576, 8, 56syl2an 596 . . . . . . . . . . 11 ((πœ‘ ∧ π‘š ∈ π‘Š) β†’ (𝐾 + (π‘š βˆ’ 𝐾)) = π‘š)
5857fveq2d 6892 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ π‘Š) β†’ ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + (π‘š βˆ’ 𝐾))) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜π‘š))
5913, 55, 583eqtrrd 2777 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ π‘Š) β†’ ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜π‘š) = (((π‘˜ ∈ 𝑍 ↦ 𝐡) shift 𝐾)β€˜π‘š))
605, 59sylan2br 595 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑀 + 𝐾))) β†’ ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜π‘š) = (((π‘˜ ∈ 𝑍 ↦ 𝐡) shift 𝐾)β€˜π‘š))
613, 60seqfeq 13989 . . . . . . 7 (πœ‘ β†’ seq(𝑀 + 𝐾)( + , (𝑗 ∈ π‘Š ↦ 𝐴)) = seq(𝑀 + 𝐾)( + , ((π‘˜ ∈ 𝑍 ↦ 𝐡) shift 𝐾)))
6261breq1d 5157 . . . . . 6 (πœ‘ β†’ (seq(𝑀 + 𝐾)( + , (𝑗 ∈ π‘Š ↦ 𝐴)) ⇝ π‘₯ ↔ seq(𝑀 + 𝐾)( + , ((π‘˜ ∈ 𝑍 ↦ 𝐡) shift 𝐾)) ⇝ π‘₯))
6311isershft 15606 . . . . . . 7 ((𝑀 ∈ β„€ ∧ 𝐾 ∈ β„€) β†’ (seq𝑀( + , (π‘˜ ∈ 𝑍 ↦ 𝐡)) ⇝ π‘₯ ↔ seq(𝑀 + 𝐾)( + , ((π‘˜ ∈ 𝑍 ↦ 𝐡) shift 𝐾)) ⇝ π‘₯))
641, 2, 63syl2anc 584 . . . . . 6 (πœ‘ β†’ (seq𝑀( + , (π‘˜ ∈ 𝑍 ↦ 𝐡)) ⇝ π‘₯ ↔ seq(𝑀 + 𝐾)( + , ((π‘˜ ∈ 𝑍 ↦ 𝐡) shift 𝐾)) ⇝ π‘₯))
6562, 64bitr4d 281 . . . . 5 (πœ‘ β†’ (seq(𝑀 + 𝐾)( + , (𝑗 ∈ π‘Š ↦ 𝐴)) ⇝ π‘₯ ↔ seq𝑀( + , (π‘˜ ∈ 𝑍 ↦ 𝐡)) ⇝ π‘₯))
6665iotabidv 6524 . . . 4 (πœ‘ β†’ (β„©π‘₯seq(𝑀 + 𝐾)( + , (𝑗 ∈ π‘Š ↦ 𝐴)) ⇝ π‘₯) = (β„©π‘₯seq𝑀( + , (π‘˜ ∈ 𝑍 ↦ 𝐡)) ⇝ π‘₯))
67 df-fv 6548 . . . 4 ( ⇝ β€˜seq(𝑀 + 𝐾)( + , (𝑗 ∈ π‘Š ↦ 𝐴))) = (β„©π‘₯seq(𝑀 + 𝐾)( + , (𝑗 ∈ π‘Š ↦ 𝐴)) ⇝ π‘₯)
68 df-fv 6548 . . . 4 ( ⇝ β€˜seq𝑀( + , (π‘˜ ∈ 𝑍 ↦ 𝐡))) = (β„©π‘₯seq𝑀( + , (π‘˜ ∈ 𝑍 ↦ 𝐡)) ⇝ π‘₯)
6966, 67, 683eqtr4g 2797 . . 3 (πœ‘ β†’ ( ⇝ β€˜seq(𝑀 + 𝐾)( + , (𝑗 ∈ π‘Š ↦ 𝐴))) = ( ⇝ β€˜seq𝑀( + , (π‘˜ ∈ 𝑍 ↦ 𝐡))))
70 eqidd 2733 . . . 4 ((πœ‘ ∧ π‘š ∈ π‘Š) β†’ ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜π‘š) = ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜π‘š))
71 isumshft.6 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ 𝐴 ∈ β„‚)
7271fmpttd 7111 . . . . 5 (πœ‘ β†’ (𝑗 ∈ π‘Š ↦ 𝐴):π‘ŠβŸΆβ„‚)
7372ffvelcdmda 7083 . . . 4 ((πœ‘ ∧ π‘š ∈ π‘Š) β†’ ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜π‘š) ∈ β„‚)
744, 3, 70, 73isum 15661 . . 3 (πœ‘ β†’ Ξ£π‘š ∈ π‘Š ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜π‘š) = ( ⇝ β€˜seq(𝑀 + 𝐾)( + , (𝑗 ∈ π‘Š ↦ 𝐴))))
75 eqidd 2733 . . . 4 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›) = ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›))
7627ralrimiva 3146 . . . . . . 7 (πœ‘ β†’ βˆ€π‘˜ ∈ 𝑍 (𝐾 + π‘˜) ∈ π‘Š)
7737eleq1d 2818 . . . . . . . 8 (π‘˜ = 𝑛 β†’ ((𝐾 + π‘˜) ∈ π‘Š ↔ (𝐾 + 𝑛) ∈ π‘Š))
7877rspccva 3611 . . . . . . 7 ((βˆ€π‘˜ ∈ 𝑍 (𝐾 + π‘˜) ∈ π‘Š ∧ 𝑛 ∈ 𝑍) β†’ (𝐾 + 𝑛) ∈ π‘Š)
7976, 78sylan 580 . . . . . 6 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (𝐾 + 𝑛) ∈ π‘Š)
80 ffvelcdm 7080 . . . . . 6 (((𝑗 ∈ π‘Š ↦ 𝐴):π‘ŠβŸΆβ„‚ ∧ (𝐾 + 𝑛) ∈ π‘Š) β†’ ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + 𝑛)) ∈ β„‚)
8172, 79, 80syl2an2r 683 . . . . 5 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜(𝐾 + 𝑛)) ∈ β„‚)
8241, 81eqeltrd 2833 . . . 4 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›) ∈ β„‚)
839, 1, 75, 82isum 15661 . . 3 (πœ‘ β†’ Σ𝑛 ∈ 𝑍 ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›) = ( ⇝ β€˜seq𝑀( + , (π‘˜ ∈ 𝑍 ↦ 𝐡))))
8469, 74, 833eqtr4d 2782 . 2 (πœ‘ β†’ Ξ£π‘š ∈ π‘Š ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜π‘š) = Σ𝑛 ∈ 𝑍 ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›))
85 sumfc 15651 . 2 Ξ£π‘š ∈ π‘Š ((𝑗 ∈ π‘Š ↦ 𝐴)β€˜π‘š) = Σ𝑗 ∈ π‘Š 𝐴
86 sumfc 15651 . 2 Σ𝑛 ∈ 𝑍 ((π‘˜ ∈ 𝑍 ↦ 𝐡)β€˜π‘›) = Ξ£π‘˜ ∈ 𝑍 𝐡
8784, 85, 863eqtr3g 2795 1 (πœ‘ β†’ Σ𝑗 ∈ π‘Š 𝐴 = Ξ£π‘˜ ∈ 𝑍 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5147   ↦ cmpt 5230   I cid 5572  β„©cio 6490  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104   + caddc 11109   βˆ’ cmin 11440  β„€cz 12554  β„€β‰₯cuz 12818  seqcseq 13962   shift cshi 15009   ⇝ cli 15424  Ξ£csu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629
This theorem is referenced by:  eftlub  16048  pserdv2  25933  logtayl  26159  binomcxplemnotnn0  43100
  Copyright terms: Public domain W3C validator