MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumshft Structured version   Visualization version   GIF version

Theorem isumshft 15366
Description: Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumshft.1 𝑍 = (ℤ𝑀)
isumshft.2 𝑊 = (ℤ‘(𝑀 + 𝐾))
isumshft.3 (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
isumshft.4 (𝜑𝐾 ∈ ℤ)
isumshft.5 (𝜑𝑀 ∈ ℤ)
isumshft.6 ((𝜑𝑗𝑊) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
isumshft (𝜑 → Σ𝑗𝑊 𝐴 = Σ𝑘𝑍 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑗,𝑘,𝐾   𝜑,𝑗,𝑘   𝑗,𝑊,𝑘   𝐵,𝑗   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝑀(𝑗,𝑘)   𝑍(𝑗)

Proof of Theorem isumshft
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumshft.5 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2 isumshft.4 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
31, 2zaddcld 12251 . . . . . . . 8 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
4 isumshft.2 . . . . . . . . . 10 𝑊 = (ℤ‘(𝑀 + 𝐾))
54eleq2i 2822 . . . . . . . . 9 (𝑚𝑊𝑚 ∈ (ℤ‘(𝑀 + 𝐾)))
62zcnd 12248 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℂ)
7 eluzelcn 12415 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ‘(𝑀 + 𝐾)) → 𝑚 ∈ ℂ)
87, 4eleq2s 2849 . . . . . . . . . . 11 (𝑚𝑊𝑚 ∈ ℂ)
9 isumshft.1 . . . . . . . . . . . . . 14 𝑍 = (ℤ𝑀)
109fvexi 6709 . . . . . . . . . . . . 13 𝑍 ∈ V
1110mptex 7017 . . . . . . . . . . . 12 (𝑘𝑍𝐵) ∈ V
1211shftval 14602 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (((𝑘𝑍𝐵) shift 𝐾)‘𝑚) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
136, 8, 12syl2an 599 . . . . . . . . . 10 ((𝜑𝑚𝑊) → (((𝑘𝑍𝐵) shift 𝐾)‘𝑚) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
14 simpr 488 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → 𝑘𝑍)
15 eqid 2736 . . . . . . . . . . . . . . . . 17 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
1615fvmpt2i 6806 . . . . . . . . . . . . . . . 16 (𝑘𝑍 → ((𝑘𝑍𝐵)‘𝑘) = ( I ‘𝐵))
1714, 16syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐵)‘𝑘) = ( I ‘𝐵))
18 eluzelcn 12415 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℂ)
1918, 9eleq2s 2849 . . . . . . . . . . . . . . . . . . 19 (𝑘𝑍𝑘 ∈ ℂ)
20 addcom 10983 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
216, 19, 20syl2an 599 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
22 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑍𝑘𝑍)
2322, 9eleqtrdi 2841 . . . . . . . . . . . . . . . . . . 19 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
24 eluzadd 12434 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
2523, 2, 24syl2anr 600 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → (𝑘 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
2621, 25eqeltrd 2831 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ (ℤ‘(𝑀 + 𝐾)))
2726, 4eleqtrrdi 2842 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) ∈ 𝑊)
28 isumshft.3 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝐾 + 𝑘) → 𝐴 = 𝐵)
29 eqid 2736 . . . . . . . . . . . . . . . . 17 (𝑗𝑊𝐴) = (𝑗𝑊𝐴)
3028, 29fvmpti 6795 . . . . . . . . . . . . . . . 16 ((𝐾 + 𝑘) ∈ 𝑊 → ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) = ( I ‘𝐵))
3127, 30syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) = ( I ‘𝐵))
3217, 31eqtr4d 2774 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)))
3332ralrimiva 3095 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝑍 ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)))
34 nffvmpt1 6706 . . . . . . . . . . . . . . 15 𝑘((𝑘𝑍𝐵)‘𝑛)
3534nfeq1 2912 . . . . . . . . . . . . . 14 𝑘((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))
36 fveq2 6695 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝑘𝑍𝐵)‘𝑘) = ((𝑘𝑍𝐵)‘𝑛))
37 oveq2 7199 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (𝐾 + 𝑘) = (𝐾 + 𝑛))
3837fveq2d 6699 . . . . . . . . . . . . . . 15 (𝑘 = 𝑛 → ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
3936, 38eqeq12d 2752 . . . . . . . . . . . . . 14 (𝑘 = 𝑛 → (((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) ↔ ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))))
4035, 39rspc 3515 . . . . . . . . . . . . 13 (𝑛𝑍 → (∀𝑘𝑍 ((𝑘𝑍𝐵)‘𝑘) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑘)) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛))))
4133, 40mpan9 510 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
4241ralrimiva 3095 . . . . . . . . . . 11 (𝜑 → ∀𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)))
431adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝑀 ∈ ℤ)
442adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝐾 ∈ ℤ)
45 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑚𝑊) → 𝑚𝑊)
4645, 4eleqtrdi 2841 . . . . . . . . . . . . 13 ((𝜑𝑚𝑊) → 𝑚 ∈ (ℤ‘(𝑀 + 𝐾)))
47 eluzsub 12435 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝑚𝐾) ∈ (ℤ𝑀))
4843, 44, 46, 47syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑚𝑊) → (𝑚𝐾) ∈ (ℤ𝑀))
4948, 9eleqtrrdi 2842 . . . . . . . . . . 11 ((𝜑𝑚𝑊) → (𝑚𝐾) ∈ 𝑍)
50 fveq2 6695 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝐾) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑘𝑍𝐵)‘(𝑚𝐾)))
51 oveq2 7199 . . . . . . . . . . . . . 14 (𝑛 = (𝑚𝐾) → (𝐾 + 𝑛) = (𝐾 + (𝑚𝐾)))
5251fveq2d 6699 . . . . . . . . . . . . 13 (𝑛 = (𝑚𝐾) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
5350, 52eqeq12d 2752 . . . . . . . . . . . 12 (𝑛 = (𝑚𝐾) → (((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ↔ ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾)))))
5453rspccva 3526 . . . . . . . . . . 11 ((∀𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ∧ (𝑚𝐾) ∈ 𝑍) → ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
5542, 49, 54syl2an2r 685 . . . . . . . . . 10 ((𝜑𝑚𝑊) → ((𝑘𝑍𝐵)‘(𝑚𝐾)) = ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))))
56 pncan3 11051 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝐾 + (𝑚𝐾)) = 𝑚)
576, 8, 56syl2an 599 . . . . . . . . . . 11 ((𝜑𝑚𝑊) → (𝐾 + (𝑚𝐾)) = 𝑚)
5857fveq2d 6699 . . . . . . . . . 10 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘(𝐾 + (𝑚𝐾))) = ((𝑗𝑊𝐴)‘𝑚))
5913, 55, 583eqtrrd 2776 . . . . . . . . 9 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) = (((𝑘𝑍𝐵) shift 𝐾)‘𝑚))
605, 59sylan2br 598 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑀 + 𝐾))) → ((𝑗𝑊𝐴)‘𝑚) = (((𝑘𝑍𝐵) shift 𝐾)‘𝑚))
613, 60seqfeq 13566 . . . . . . 7 (𝜑 → seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) = seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)))
6261breq1d 5049 . . . . . 6 (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)) ⇝ 𝑥))
6311isershft 15192 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)) ⇝ 𝑥))
641, 2, 63syl2anc 587 . . . . . 6 (𝜑 → (seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥 ↔ seq(𝑀 + 𝐾)( + , ((𝑘𝑍𝐵) shift 𝐾)) ⇝ 𝑥))
6562, 64bitr4d 285 . . . . 5 (𝜑 → (seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥 ↔ seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥))
6665iotabidv 6342 . . . 4 (𝜑 → (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥))
67 df-fv 6366 . . . 4 ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))) = (℩𝑥seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴)) ⇝ 𝑥)
68 df-fv 6366 . . . 4 ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))) = (℩𝑥seq𝑀( + , (𝑘𝑍𝐵)) ⇝ 𝑥)
6966, 67, 683eqtr4g 2796 . . 3 (𝜑 → ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))))
70 eqidd 2737 . . . 4 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) = ((𝑗𝑊𝐴)‘𝑚))
71 isumshft.6 . . . . . 6 ((𝜑𝑗𝑊) → 𝐴 ∈ ℂ)
7271fmpttd 6910 . . . . 5 (𝜑 → (𝑗𝑊𝐴):𝑊⟶ℂ)
7372ffvelrnda 6882 . . . 4 ((𝜑𝑚𝑊) → ((𝑗𝑊𝐴)‘𝑚) ∈ ℂ)
744, 3, 70, 73isum 15248 . . 3 (𝜑 → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = ( ⇝ ‘seq(𝑀 + 𝐾)( + , (𝑗𝑊𝐴))))
75 eqidd 2737 . . . 4 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) = ((𝑘𝑍𝐵)‘𝑛))
7627ralrimiva 3095 . . . . . . 7 (𝜑 → ∀𝑘𝑍 (𝐾 + 𝑘) ∈ 𝑊)
7737eleq1d 2815 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐾 + 𝑘) ∈ 𝑊 ↔ (𝐾 + 𝑛) ∈ 𝑊))
7877rspccva 3526 . . . . . . 7 ((∀𝑘𝑍 (𝐾 + 𝑘) ∈ 𝑊𝑛𝑍) → (𝐾 + 𝑛) ∈ 𝑊)
7976, 78sylan 583 . . . . . 6 ((𝜑𝑛𝑍) → (𝐾 + 𝑛) ∈ 𝑊)
80 ffvelrn 6880 . . . . . 6 (((𝑗𝑊𝐴):𝑊⟶ℂ ∧ (𝐾 + 𝑛) ∈ 𝑊) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ∈ ℂ)
8172, 79, 80syl2an2r 685 . . . . 5 ((𝜑𝑛𝑍) → ((𝑗𝑊𝐴)‘(𝐾 + 𝑛)) ∈ ℂ)
8241, 81eqeltrd 2831 . . . 4 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐵)‘𝑛) ∈ ℂ)
839, 1, 75, 82isum 15248 . . 3 (𝜑 → Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = ( ⇝ ‘seq𝑀( + , (𝑘𝑍𝐵))))
8469, 74, 833eqtr4d 2781 . 2 (𝜑 → Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛))
85 sumfc 15238 . 2 Σ𝑚𝑊 ((𝑗𝑊𝐴)‘𝑚) = Σ𝑗𝑊 𝐴
86 sumfc 15238 . 2 Σ𝑛𝑍 ((𝑘𝑍𝐵)‘𝑛) = Σ𝑘𝑍 𝐵
8784, 85, 863eqtr3g 2794 1 (𝜑 → Σ𝑗𝑊 𝐴 = Σ𝑘𝑍 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051   class class class wbr 5039  cmpt 5120   I cid 5439  cio 6314  wf 6354  cfv 6358  (class class class)co 7191  cc 10692   + caddc 10697  cmin 11027  cz 12141  cuz 12403  seqcseq 13539   shift cshi 14594  cli 15010  Σcsu 15214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-shft 14595  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215
This theorem is referenced by:  eftlub  15633  pserdv2  25276  logtayl  25502  binomcxplemnotnn0  41588
  Copyright terms: Public domain W3C validator