![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iprodclim3 | Structured version Visualization version GIF version |
Description: The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by Scott Fenton, 18-Dec-2017.) |
Ref | Expression |
---|---|
iprodclim3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
iprodclim3.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
iprodclim3.3 | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑦)) |
iprodclim3.4 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
iprodclim3.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
iprodclim3.6 | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴) |
Ref | Expression |
---|---|
iprodclim3 | ⊢ (𝜑 → 𝐹 ⇝ ∏𝑘 ∈ 𝑍 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iprodclim3.4 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
2 | climdm 14766 | . . 3 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
3 | 1, 2 | sylib 210 | . 2 ⊢ (𝜑 → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
4 | prodfc 15153 | . . . 4 ⊢ ∏𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ 𝑍 𝐴 | |
5 | iprodclim3.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | iprodclim3.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | iprodclim3.3 | . . . . 5 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑦)) | |
8 | eqidd 2773 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
9 | iprodclim3.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
10 | 9 | fmpttd 6696 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴):𝑍⟶ℂ) |
11 | 10 | ffvelrnda 6670 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
12 | 5, 6, 7, 8, 11 | iprod 15146 | . . . 4 ⊢ (𝜑 → ∏𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)))) |
13 | 4, 12 | syl5eqr 2822 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)))) |
14 | seqex 13180 | . . . . . . 7 ⊢ seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V | |
15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V) |
16 | iprodclim3.6 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴) | |
17 | fzssuz 12758 | . . . . . . . . . . . . . 14 ⊢ (𝑀...𝑗) ⊆ (ℤ≥‘𝑀) | |
18 | 17, 5 | sseqtr4i 3888 | . . . . . . . . . . . . 13 ⊢ (𝑀...𝑗) ⊆ 𝑍 |
19 | resmpt 5744 | . . . . . . . . . . . . 13 ⊢ ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)) | |
20 | 18, 19 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴) |
21 | 20 | fveq1i 6494 | . . . . . . . . . . 11 ⊢ (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
22 | fvres 6512 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ (𝑀...𝑗) → (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
23 | 21, 22 | syl5reqr 2823 | . . . . . . . . . 10 ⊢ (𝑚 ∈ (𝑀...𝑗) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)) |
24 | 23 | prodeq2i 15127 | . . . . . . . . 9 ⊢ ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
25 | prodfc 15153 | . . . . . . . . 9 ⊢ ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴 | |
26 | 24, 25 | eqtri 2796 | . . . . . . . 8 ⊢ ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴 |
27 | eqidd 2773 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
28 | simpr 477 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
29 | 28, 5 | syl6eleq 2870 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
30 | elfzuz 12714 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ (ℤ≥‘𝑀)) | |
31 | 30, 5 | syl6eleqr 2871 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ 𝑍) |
32 | 31, 11 | sylan2 583 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
33 | 32 | adantlr 702 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
34 | 27, 29, 33 | fprodser 15157 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗)) |
35 | 26, 34 | syl5eqr 2822 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ∏𝑘 ∈ (𝑀...𝑗)𝐴 = (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗)) |
36 | 16, 35 | eqtr2d 2809 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗) = (𝐹‘𝑗)) |
37 | 5, 15, 1, 6, 36 | climeq 14779 | . . . . 5 ⊢ (𝜑 → (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑥)) |
38 | 37 | iotabidv 6167 | . . . 4 ⊢ (𝜑 → (℩𝑥seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) = (℩𝑥𝐹 ⇝ 𝑥)) |
39 | df-fv 6190 | . . . 4 ⊢ ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))) = (℩𝑥seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) | |
40 | df-fv 6190 | . . . 4 ⊢ ( ⇝ ‘𝐹) = (℩𝑥𝐹 ⇝ 𝑥) | |
41 | 38, 39, 40 | 3eqtr4g 2833 | . . 3 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))) = ( ⇝ ‘𝐹)) |
42 | 13, 41 | eqtrd 2808 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘𝐹)) |
43 | 3, 42 | breqtrrd 4951 | 1 ⊢ (𝜑 → 𝐹 ⇝ ∏𝑘 ∈ 𝑍 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∃wex 1742 ∈ wcel 2050 ≠ wne 2961 ∃wrex 3083 Vcvv 3409 ⊆ wss 3823 class class class wbr 4923 ↦ cmpt 5002 dom cdm 5401 ↾ cres 5403 ℩cio 6144 ‘cfv 6182 (class class class)co 6970 ℂcc 10327 0cc0 10329 · cmul 10334 ℤcz 11787 ℤ≥cuz 12052 ...cfz 12702 seqcseq 13178 ⇝ cli 14696 ∏cprod 15113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8892 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 ax-pre-sup 10407 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-se 5361 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-oadd 7903 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-sup 8695 df-oi 8763 df-card 9156 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-div 11093 df-nn 11434 df-2 11497 df-3 11498 df-n0 11702 df-z 11788 df-uz 12053 df-rp 12199 df-fz 12703 df-fzo 12844 df-seq 13179 df-exp 13239 df-hash 13500 df-cj 14313 df-re 14314 df-im 14315 df-sqrt 14449 df-abs 14450 df-clim 14700 df-prod 15114 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |