![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iprodclim3 | Structured version Visualization version GIF version |
Description: The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by Scott Fenton, 18-Dec-2017.) |
Ref | Expression |
---|---|
iprodclim3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
iprodclim3.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
iprodclim3.3 | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑦)) |
iprodclim3.4 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
iprodclim3.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
iprodclim3.6 | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴) |
Ref | Expression |
---|---|
iprodclim3 | ⊢ (𝜑 → 𝐹 ⇝ ∏𝑘 ∈ 𝑍 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iprodclim3.4 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
2 | climdm 15600 | . . 3 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
4 | prodfc 15993 | . . . 4 ⊢ ∏𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ 𝑍 𝐴 | |
5 | iprodclim3.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | iprodclim3.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | iprodclim3.3 | . . . . 5 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑦)) | |
8 | eqidd 2741 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
9 | iprodclim3.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
10 | 9 | fmpttd 7149 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴):𝑍⟶ℂ) |
11 | 10 | ffvelcdmda 7118 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
12 | 5, 6, 7, 8, 11 | iprod 15986 | . . . 4 ⊢ (𝜑 → ∏𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)))) |
13 | 4, 12 | eqtr3id 2794 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)))) |
14 | seqex 14054 | . . . . . . 7 ⊢ seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V | |
15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V) |
16 | iprodclim3.6 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴) | |
17 | fvres 6939 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ (𝑀...𝑗) → (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
18 | fzssuz 13625 | . . . . . . . . . . . . . 14 ⊢ (𝑀...𝑗) ⊆ (ℤ≥‘𝑀) | |
19 | 18, 5 | sseqtrri 4046 | . . . . . . . . . . . . 13 ⊢ (𝑀...𝑗) ⊆ 𝑍 |
20 | resmpt 6066 | . . . . . . . . . . . . 13 ⊢ ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)) | |
21 | 19, 20 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴) |
22 | 21 | fveq1i 6921 | . . . . . . . . . . 11 ⊢ (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
23 | 17, 22 | eqtr3di 2795 | . . . . . . . . . 10 ⊢ (𝑚 ∈ (𝑀...𝑗) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)) |
24 | 23 | prodeq2i 15966 | . . . . . . . . 9 ⊢ ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
25 | prodfc 15993 | . . . . . . . . 9 ⊢ ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴 | |
26 | 24, 25 | eqtri 2768 | . . . . . . . 8 ⊢ ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴 |
27 | eqidd 2741 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
28 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
29 | 28, 5 | eleqtrdi 2854 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
30 | elfzuz 13580 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ (ℤ≥‘𝑀)) | |
31 | 30, 5 | eleqtrrdi 2855 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ 𝑍) |
32 | 31, 11 | sylan2 592 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
33 | 32 | adantlr 714 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
34 | 27, 29, 33 | fprodser 15997 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗)) |
35 | 26, 34 | eqtr3id 2794 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ∏𝑘 ∈ (𝑀...𝑗)𝐴 = (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗)) |
36 | 16, 35 | eqtr2d 2781 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗) = (𝐹‘𝑗)) |
37 | 5, 15, 1, 6, 36 | climeq 15613 | . . . . 5 ⊢ (𝜑 → (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑥)) |
38 | 37 | iotabidv 6557 | . . . 4 ⊢ (𝜑 → (℩𝑥seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) = (℩𝑥𝐹 ⇝ 𝑥)) |
39 | df-fv 6581 | . . . 4 ⊢ ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))) = (℩𝑥seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) | |
40 | df-fv 6581 | . . . 4 ⊢ ( ⇝ ‘𝐹) = (℩𝑥𝐹 ⇝ 𝑥) | |
41 | 38, 39, 40 | 3eqtr4g 2805 | . . 3 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))) = ( ⇝ ‘𝐹)) |
42 | 13, 41 | eqtrd 2780 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘𝐹)) |
43 | 3, 42 | breqtrrd 5194 | 1 ⊢ (𝜑 → 𝐹 ⇝ ∏𝑘 ∈ 𝑍 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ↾ cres 5702 ℩cio 6523 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 · cmul 11189 ℤcz 12639 ℤ≥cuz 12903 ...cfz 13567 seqcseq 14052 ⇝ cli 15530 ∏cprod 15951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-prod 15952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |