MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iprodclim3 Structured version   Visualization version   GIF version

Theorem iprodclim3 15942
Description: The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
iprodclim3.1 𝑍 = (ℤ𝑀)
iprodclim3.2 (𝜑𝑀 ∈ ℤ)
iprodclim3.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍𝐴)) ⇝ 𝑦))
iprodclim3.4 (𝜑𝐹 ∈ dom ⇝ )
iprodclim3.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
iprodclim3.6 ((𝜑𝑗𝑍) → (𝐹𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴)
Assertion
Ref Expression
iprodclim3 (𝜑𝐹 ⇝ ∏𝑘𝑍 𝐴)
Distinct variable groups:   𝐴,𝑗   𝐴,𝑛,𝑦   𝑗,𝑀,𝑘   𝑦,𝑀   𝑗,𝐹   𝜑,𝑗,𝑘   𝜑,𝑛,𝑦   𝑗,𝑍,𝑘   𝑛,𝑍,𝑦,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑦,𝑘,𝑛)   𝑀(𝑛)

Proof of Theorem iprodclim3
Dummy variables 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iprodclim3.4 . . 3 (𝜑𝐹 ∈ dom ⇝ )
2 climdm 15496 . . 3 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
31, 2sylib 218 . 2 (𝜑𝐹 ⇝ ( ⇝ ‘𝐹))
4 prodfc 15887 . . . 4 𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ∏𝑘𝑍 𝐴
5 iprodclim3.1 . . . . 5 𝑍 = (ℤ𝑀)
6 iprodclim3.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
7 iprodclim3.3 . . . . 5 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘𝑍𝐴)) ⇝ 𝑦))
8 eqidd 2730 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
9 iprodclim3.5 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
109fmpttd 7069 . . . . . 6 (𝜑 → (𝑘𝑍𝐴):𝑍⟶ℂ)
1110ffvelcdmda 7038 . . . . 5 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
125, 6, 7, 8, 11iprod 15880 . . . 4 (𝜑 → ∏𝑚𝑍 ((𝑘𝑍𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))))
134, 12eqtr3id 2778 . . 3 (𝜑 → ∏𝑘𝑍 𝐴 = ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))))
14 seqex 13944 . . . . . . 7 seq𝑀( · , (𝑘𝑍𝐴)) ∈ V
1514a1i 11 . . . . . 6 (𝜑 → seq𝑀( · , (𝑘𝑍𝐴)) ∈ V)
16 iprodclim3.6 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴)
17 fvres 6859 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
18 fzssuz 13502 . . . . . . . . . . . . . 14 (𝑀...𝑗) ⊆ (ℤ𝑀)
1918, 5sseqtrri 3993 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ 𝑍
20 resmpt 5997 . . . . . . . . . . . . 13 ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴))
2119, 20ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝑍𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)
2221fveq1i 6841 . . . . . . . . . . 11 (((𝑘𝑍𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
2317, 22eqtr3di 2779 . . . . . . . . . 10 (𝑚 ∈ (𝑀...𝑗) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚))
2423prodeq2i 15860 . . . . . . . . 9 𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)
25 prodfc 15887 . . . . . . . . 9 𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴
2624, 25eqtri 2752 . . . . . . . 8 𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴
27 eqidd 2730 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
28 simpr 484 . . . . . . . . . 10 ((𝜑𝑗𝑍) → 𝑗𝑍)
2928, 5eleqtrdi 2838 . . . . . . . . 9 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
30 elfzuz 13457 . . . . . . . . . . . 12 (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ (ℤ𝑀))
3130, 5eleqtrrdi 2839 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑗) → 𝑚𝑍)
3231, 11sylan2 593 . . . . . . . . . 10 ((𝜑𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3332adantlr 715 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
3427, 29, 33fprodser 15891 . . . . . . . 8 ((𝜑𝑗𝑍) → ∏𝑚 ∈ (𝑀...𝑗)((𝑘𝑍𝐴)‘𝑚) = (seq𝑀( · , (𝑘𝑍𝐴))‘𝑗))
3526, 34eqtr3id 2778 . . . . . . 7 ((𝜑𝑗𝑍) → ∏𝑘 ∈ (𝑀...𝑗)𝐴 = (seq𝑀( · , (𝑘𝑍𝐴))‘𝑗))
3616, 35eqtr2d 2765 . . . . . 6 ((𝜑𝑗𝑍) → (seq𝑀( · , (𝑘𝑍𝐴))‘𝑗) = (𝐹𝑗))
375, 15, 1, 6, 36climeq 15509 . . . . 5 (𝜑 → (seq𝑀( · , (𝑘𝑍𝐴)) ⇝ 𝑥𝐹𝑥))
3837iotabidv 6483 . . . 4 (𝜑 → (℩𝑥seq𝑀( · , (𝑘𝑍𝐴)) ⇝ 𝑥) = (℩𝑥𝐹𝑥))
39 df-fv 6507 . . . 4 ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))) = (℩𝑥seq𝑀( · , (𝑘𝑍𝐴)) ⇝ 𝑥)
40 df-fv 6507 . . . 4 ( ⇝ ‘𝐹) = (℩𝑥𝐹𝑥)
4138, 39, 403eqtr4g 2789 . . 3 (𝜑 → ( ⇝ ‘seq𝑀( · , (𝑘𝑍𝐴))) = ( ⇝ ‘𝐹))
4213, 41eqtrd 2764 . 2 (𝜑 → ∏𝑘𝑍 𝐴 = ( ⇝ ‘𝐹))
433, 42breqtrrd 5130 1 (𝜑𝐹 ⇝ ∏𝑘𝑍 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  Vcvv 3444  wss 3911   class class class wbr 5102  cmpt 5183  dom cdm 5631  cres 5633  cio 6450  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044   · cmul 11049  cz 12505  cuz 12769  ...cfz 13444  seqcseq 13942  cli 15426  cprod 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator