Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iprodclim3 | Structured version Visualization version GIF version |
Description: The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by Scott Fenton, 18-Dec-2017.) |
Ref | Expression |
---|---|
iprodclim3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
iprodclim3.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
iprodclim3.3 | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑦)) |
iprodclim3.4 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
iprodclim3.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
iprodclim3.6 | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴) |
Ref | Expression |
---|---|
iprodclim3 | ⊢ (𝜑 → 𝐹 ⇝ ∏𝑘 ∈ 𝑍 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iprodclim3.4 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
2 | climdm 15244 | . . 3 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
3 | 1, 2 | sylib 217 | . 2 ⊢ (𝜑 → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
4 | prodfc 15636 | . . . 4 ⊢ ∏𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ 𝑍 𝐴 | |
5 | iprodclim3.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | iprodclim3.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | iprodclim3.3 | . . . . 5 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑦)) | |
8 | eqidd 2740 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
9 | iprodclim3.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
10 | 9 | fmpttd 6983 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴):𝑍⟶ℂ) |
11 | 10 | ffvelrnda 6955 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
12 | 5, 6, 7, 8, 11 | iprod 15629 | . . . 4 ⊢ (𝜑 → ∏𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)))) |
13 | 4, 12 | eqtr3id 2793 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)))) |
14 | seqex 13704 | . . . . . . 7 ⊢ seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V | |
15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V) |
16 | iprodclim3.6 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴) | |
17 | fvres 6787 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ (𝑀...𝑗) → (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
18 | fzssuz 13279 | . . . . . . . . . . . . . 14 ⊢ (𝑀...𝑗) ⊆ (ℤ≥‘𝑀) | |
19 | 18, 5 | sseqtrri 3962 | . . . . . . . . . . . . 13 ⊢ (𝑀...𝑗) ⊆ 𝑍 |
20 | resmpt 5942 | . . . . . . . . . . . . 13 ⊢ ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)) | |
21 | 19, 20 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴) |
22 | 21 | fveq1i 6769 | . . . . . . . . . . 11 ⊢ (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
23 | 17, 22 | eqtr3di 2794 | . . . . . . . . . 10 ⊢ (𝑚 ∈ (𝑀...𝑗) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)) |
24 | 23 | prodeq2i 15610 | . . . . . . . . 9 ⊢ ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
25 | prodfc 15636 | . . . . . . . . 9 ⊢ ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴 | |
26 | 24, 25 | eqtri 2767 | . . . . . . . 8 ⊢ ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴 |
27 | eqidd 2740 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
28 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
29 | 28, 5 | eleqtrdi 2850 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
30 | elfzuz 13234 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ (ℤ≥‘𝑀)) | |
31 | 30, 5 | eleqtrrdi 2851 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ 𝑍) |
32 | 31, 11 | sylan2 592 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
33 | 32 | adantlr 711 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
34 | 27, 29, 33 | fprodser 15640 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗)) |
35 | 26, 34 | eqtr3id 2793 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ∏𝑘 ∈ (𝑀...𝑗)𝐴 = (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗)) |
36 | 16, 35 | eqtr2d 2780 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗) = (𝐹‘𝑗)) |
37 | 5, 15, 1, 6, 36 | climeq 15257 | . . . . 5 ⊢ (𝜑 → (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑥)) |
38 | 37 | iotabidv 6414 | . . . 4 ⊢ (𝜑 → (℩𝑥seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) = (℩𝑥𝐹 ⇝ 𝑥)) |
39 | df-fv 6438 | . . . 4 ⊢ ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))) = (℩𝑥seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) | |
40 | df-fv 6438 | . . . 4 ⊢ ( ⇝ ‘𝐹) = (℩𝑥𝐹 ⇝ 𝑥) | |
41 | 38, 39, 40 | 3eqtr4g 2804 | . . 3 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))) = ( ⇝ ‘𝐹)) |
42 | 13, 41 | eqtrd 2779 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘𝐹)) |
43 | 3, 42 | breqtrrd 5106 | 1 ⊢ (𝜑 → 𝐹 ⇝ ∏𝑘 ∈ 𝑍 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1785 ∈ wcel 2109 ≠ wne 2944 ∃wrex 3066 Vcvv 3430 ⊆ wss 3891 class class class wbr 5078 ↦ cmpt 5161 dom cdm 5588 ↾ cres 5590 ℩cio 6386 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 0cc0 10855 · cmul 10860 ℤcz 12302 ℤ≥cuz 12564 ...cfz 13221 seqcseq 13702 ⇝ cli 15174 ∏cprod 15596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-fz 13222 df-fzo 13365 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 df-prod 15597 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |