| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iprodclim3 | Structured version Visualization version GIF version | ||
| Description: The sequence of partial finite product of a converging infinite product converge to the infinite product of the series. Note that 𝑗 must not occur in 𝐴. (Contributed by Scott Fenton, 18-Dec-2017.) |
| Ref | Expression |
|---|---|
| iprodclim3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| iprodclim3.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| iprodclim3.3 | ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑦)) |
| iprodclim3.4 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
| iprodclim3.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
| iprodclim3.6 | ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴) |
| Ref | Expression |
|---|---|
| iprodclim3 | ⊢ (𝜑 → 𝐹 ⇝ ∏𝑘 ∈ 𝑍 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iprodclim3.4 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
| 2 | climdm 15520 | . . 3 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
| 4 | prodfc 15911 | . . . 4 ⊢ ∏𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ 𝑍 𝐴 | |
| 5 | iprodclim3.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | iprodclim3.2 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | iprodclim3.3 | . . . . 5 ⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑦)) | |
| 8 | eqidd 2730 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
| 9 | iprodclim3.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
| 10 | 9 | fmpttd 7087 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴):𝑍⟶ℂ) |
| 11 | 10 | ffvelcdmda 7056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
| 12 | 5, 6, 7, 8, 11 | iprod 15904 | . . . 4 ⊢ (𝜑 → ∏𝑚 ∈ 𝑍 ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)))) |
| 13 | 4, 12 | eqtr3id 2778 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)))) |
| 14 | seqex 13968 | . . . . . . 7 ⊢ seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ∈ V) |
| 16 | iprodclim3.6 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) = ∏𝑘 ∈ (𝑀...𝑗)𝐴) | |
| 17 | fvres 6877 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ (𝑀...𝑗) → (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
| 18 | fzssuz 13526 | . . . . . . . . . . . . . 14 ⊢ (𝑀...𝑗) ⊆ (ℤ≥‘𝑀) | |
| 19 | 18, 5 | sseqtrri 3996 | . . . . . . . . . . . . 13 ⊢ (𝑀...𝑗) ⊆ 𝑍 |
| 20 | resmpt 6008 | . . . . . . . . . . . . 13 ⊢ ((𝑀...𝑗) ⊆ 𝑍 → ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)) | |
| 21 | 19, 20 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐴) |
| 22 | 21 | fveq1i 6859 | . . . . . . . . . . 11 ⊢ (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑗))‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
| 23 | 17, 22 | eqtr3di 2779 | . . . . . . . . . 10 ⊢ (𝑚 ∈ (𝑀...𝑗) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚)) |
| 24 | 23 | prodeq2i 15884 | . . . . . . . . 9 ⊢ ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) |
| 25 | prodfc 15911 | . . . . . . . . 9 ⊢ ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ (𝑀...𝑗) ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴 | |
| 26 | 24, 25 | eqtri 2752 | . . . . . . . 8 ⊢ ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ∏𝑘 ∈ (𝑀...𝑗)𝐴 |
| 27 | eqidd 2730 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | |
| 28 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
| 29 | 28, 5 | eleqtrdi 2838 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 30 | elfzuz 13481 | . . . . . . . . . . . 12 ⊢ (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ (ℤ≥‘𝑀)) | |
| 31 | 30, 5 | eleqtrrdi 2839 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ (𝑀...𝑗) → 𝑚 ∈ 𝑍) |
| 32 | 31, 11 | sylan2 593 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
| 33 | 32 | adantlr 715 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...𝑗)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
| 34 | 27, 29, 33 | fprodser 15915 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ∏𝑚 ∈ (𝑀...𝑗)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗)) |
| 35 | 26, 34 | eqtr3id 2778 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ∏𝑘 ∈ (𝑀...𝑗)𝐴 = (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗)) |
| 36 | 16, 35 | eqtr2d 2765 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))‘𝑗) = (𝐹‘𝑗)) |
| 37 | 5, 15, 1, 6, 36 | climeq 15533 | . . . . 5 ⊢ (𝜑 → (seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑥)) |
| 38 | 37 | iotabidv 6495 | . . . 4 ⊢ (𝜑 → (℩𝑥seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) = (℩𝑥𝐹 ⇝ 𝑥)) |
| 39 | df-fv 6519 | . . . 4 ⊢ ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))) = (℩𝑥seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝑥) | |
| 40 | df-fv 6519 | . . . 4 ⊢ ( ⇝ ‘𝐹) = (℩𝑥𝐹 ⇝ 𝑥) | |
| 41 | 38, 39, 40 | 3eqtr4g 2789 | . . 3 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( · , (𝑘 ∈ 𝑍 ↦ 𝐴))) = ( ⇝ ‘𝐹)) |
| 42 | 13, 41 | eqtrd 2764 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘𝐹)) |
| 43 | 3, 42 | breqtrrd 5135 | 1 ⊢ (𝜑 → 𝐹 ⇝ ∏𝑘 ∈ 𝑍 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ↾ cres 5640 ℩cio 6462 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 · cmul 11073 ℤcz 12529 ℤ≥cuz 12793 ...cfz 13468 seqcseq 13966 ⇝ cli 15450 ∏cprod 15869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-prod 15870 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |