Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  petid2 Structured version   Visualization version   GIF version

Theorem petid2 38812
Description: Class 𝐴 is a partition by the identity class if and only if the cosets by the identity class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
petid2 (( Disj I ∧ (dom I / I ) = 𝐴) ↔ ( EqvRel ≀ I ∧ (dom ≀ I / ≀ I ) = 𝐴))

Proof of Theorem petid2
StepHypRef Expression
1 disjALTVid 38751 . 2 Disj I
21petlemi 38809 1 (( Disj I ∧ (dom I / I ) = 𝐴) ↔ ( EqvRel ≀ I ∧ (dom ≀ I / ≀ I ) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539   I cid 5586  dom cdm 5693   / cqs 8752  ccoss 38176   EqvRel weqvrel 38193   Disj wdisjALTV 38210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rmo 3380  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-ec 8755  df-qs 8759  df-coss 38407  df-refrel 38508  df-cnvrefrel 38523  df-symrel 38540  df-trrel 38570  df-eqvrel 38581  df-disjALTV 38701
This theorem is referenced by:  petid  38813
  Copyright terms: Public domain W3C validator