Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ditgeq12d Structured version   Visualization version   GIF version

Theorem ditgeq12d 36180
Description: Equality theorem for the directed integral. Deduction form. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
ditgeq12d.1 (𝜑𝐴 = 𝐵)
ditgeq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
ditgeq12d (𝜑 → ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐸 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝐸(𝑥)

Proof of Theorem ditgeq12d
StepHypRef Expression
1 ditgeq12d.1 . 2 (𝜑𝐴 = 𝐵)
2 ditgeq12d.2 . 2 (𝜑𝐶 = 𝐷)
3 ditgeq1 25895 . . 3 (𝐴 = 𝐵 → ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐶]𝐸 d𝑥)
4 ditgeq2 25896 . . 3 (𝐶 = 𝐷 → ⨜[𝐵𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐸 d𝑥)
53, 4sylan9eq 2800 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐸 d𝑥)
61, 2, 5syl2anc 583 1 (𝜑 → ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐸 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cdit 25893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5701  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-pred 6327  df-iota 6520  df-fv 6576  df-ov 7446  df-oprab 7447  df-mpo 7448  df-frecs 8316  df-wrecs 8347  df-recs 8421  df-rdg 8460  df-neg 11517  df-seq 14047  df-sum 15729  df-itg 25669  df-ditg 25894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator