| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ditgeq123dv | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the directed integral. Deduction form. General version of ditgeq3sdv 36207. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| ditgeq123dv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| ditgeq123dv.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| ditgeq123dv.3 | ⊢ (𝜑 → 𝐸 = 𝐹) |
| Ref | Expression |
|---|---|
| ditgeq123dv | ⊢ (𝜑 → ⨜[𝐴 → 𝐶]𝐸 d𝑥 = ⨜[𝐵 → 𝐷]𝐹 d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgeq123dv.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ditgeq123dv.2 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | breq12d 5105 | . . 3 ⊢ (𝜑 → (𝐴 ≤ 𝐶 ↔ 𝐵 ≤ 𝐷)) |
| 4 | 1, 2 | oveq12d 7367 | . . . 4 ⊢ (𝜑 → (𝐴(,)𝐶) = (𝐵(,)𝐷)) |
| 5 | ditgeq123dv.3 | . . . 4 ⊢ (𝜑 → 𝐸 = 𝐹) | |
| 6 | 4, 5 | itgeq12sdv 36203 | . . 3 ⊢ (𝜑 → ∫(𝐴(,)𝐶)𝐸 d𝑥 = ∫(𝐵(,)𝐷)𝐹 d𝑥) |
| 7 | 2, 1 | oveq12d 7367 | . . . . 5 ⊢ (𝜑 → (𝐶(,)𝐴) = (𝐷(,)𝐵)) |
| 8 | 7, 5 | itgeq12sdv 36203 | . . . 4 ⊢ (𝜑 → ∫(𝐶(,)𝐴)𝐸 d𝑥 = ∫(𝐷(,)𝐵)𝐹 d𝑥) |
| 9 | 8 | negeqd 11357 | . . 3 ⊢ (𝜑 → -∫(𝐶(,)𝐴)𝐸 d𝑥 = -∫(𝐷(,)𝐵)𝐹 d𝑥) |
| 10 | 3, 6, 9 | ifbieq12d 4505 | . 2 ⊢ (𝜑 → if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥) = if(𝐵 ≤ 𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑥, -∫(𝐷(,)𝐵)𝐹 d𝑥)) |
| 11 | df-ditg 25746 | . 2 ⊢ ⨜[𝐴 → 𝐶]𝐸 d𝑥 = if(𝐴 ≤ 𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥) | |
| 12 | df-ditg 25746 | . 2 ⊢ ⨜[𝐵 → 𝐷]𝐹 d𝑥 = if(𝐵 ≤ 𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑥, -∫(𝐷(,)𝐵)𝐹 d𝑥) | |
| 13 | 10, 11, 12 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → ⨜[𝐴 → 𝐶]𝐸 d𝑥 = ⨜[𝐵 → 𝐷]𝐹 d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4476 class class class wbr 5092 (class class class)co 7349 ≤ cle 11150 -cneg 11348 (,)cioo 13248 ∫citg 25517 ⨜cdit 25745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-xp 5625 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-iota 6438 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-neg 11350 df-seq 13909 df-sum 15594 df-itg 25522 df-ditg 25746 |
| This theorem is referenced by: ditgeq3sdv 36207 |
| Copyright terms: Public domain | W3C validator |