Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ditgeq123dv Structured version   Visualization version   GIF version

Theorem ditgeq123dv 36200
Description: Equality theorem for the directed integral. Deduction form. General version of ditgeq3sdv 36202. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
ditgeq123dv.1 (𝜑𝐴 = 𝐵)
ditgeq123dv.2 (𝜑𝐶 = 𝐷)
ditgeq123dv.3 (𝜑𝐸 = 𝐹)
Assertion
Ref Expression
ditgeq123dv (𝜑 → ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐹 d𝑥)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑥)   𝐹(𝑥)

Proof of Theorem ditgeq123dv
StepHypRef Expression
1 ditgeq123dv.1 . . . 4 (𝜑𝐴 = 𝐵)
2 ditgeq123dv.2 . . . 4 (𝜑𝐶 = 𝐷)
31, 2breq12d 5154 . . 3 (𝜑 → (𝐴𝐶𝐵𝐷))
41, 2oveq12d 7447 . . . 4 (𝜑 → (𝐴(,)𝐶) = (𝐵(,)𝐷))
5 ditgeq123dv.3 . . . 4 (𝜑𝐸 = 𝐹)
64, 5itgeq12sdv 36198 . . 3 (𝜑 → ∫(𝐴(,)𝐶)𝐸 d𝑥 = ∫(𝐵(,)𝐷)𝐹 d𝑥)
72, 1oveq12d 7447 . . . . 5 (𝜑 → (𝐶(,)𝐴) = (𝐷(,)𝐵))
87, 5itgeq12sdv 36198 . . . 4 (𝜑 → ∫(𝐶(,)𝐴)𝐸 d𝑥 = ∫(𝐷(,)𝐵)𝐹 d𝑥)
98negeqd 11498 . . 3 (𝜑 → -∫(𝐶(,)𝐴)𝐸 d𝑥 = -∫(𝐷(,)𝐵)𝐹 d𝑥)
103, 6, 9ifbieq12d 4552 . 2 (𝜑 → if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥) = if(𝐵𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑥, -∫(𝐷(,)𝐵)𝐹 d𝑥))
11 df-ditg 25872 . 2 ⨜[𝐴𝐶]𝐸 d𝑥 = if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥)
12 df-ditg 25872 . 2 ⨜[𝐵𝐷]𝐹 d𝑥 = if(𝐵𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑥, -∫(𝐷(,)𝐵)𝐹 d𝑥)
1310, 11, 123eqtr4g 2801 1 (𝜑 → ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐹 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  ifcif 4524   class class class wbr 5141  (class class class)co 7429  cle 11292  -cneg 11489  (,)cioo 13383  citg 25643  cdit 25871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-mpt 5224  df-xp 5689  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-iota 6512  df-fv 6567  df-ov 7432  df-oprab 7433  df-mpo 7434  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-neg 11491  df-seq 14039  df-sum 15719  df-itg 25648  df-ditg 25872
This theorem is referenced by:  ditgeq3sdv  36202
  Copyright terms: Public domain W3C validator