![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwdjuen | Structured version Visualization version GIF version |
Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
pwdjuen | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuex 9931 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
2 | pw2eng 9102 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → 𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵))) |
4 | 2on 8500 | . . . 4 ⊢ 2o ∈ On | |
5 | mapdjuen 10203 | . . . 4 ⊢ ((2o ∈ On ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) | |
6 | 4, 5 | mp3an1 1445 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) |
7 | pw2eng 9102 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) | |
8 | pw2eng 9102 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ (2o ↑m 𝐵)) | |
9 | xpen 9164 | . . . . 5 ⊢ ((𝒫 𝐴 ≈ (2o ↑m 𝐴) ∧ 𝒫 𝐵 ≈ (2o ↑m 𝐵)) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) | |
10 | 7, 8, 9 | syl2an 595 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) |
11 | enen2 9142 | . . . 4 ⊢ ((𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)) → ((2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)))) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)))) |
13 | 6, 12 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
14 | entr 9026 | . 2 ⊢ ((𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵)) ∧ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) | |
15 | 3, 13, 14 | syl2anc 583 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 Vcvv 3471 𝒫 cpw 4603 class class class wbr 5148 × cxp 5676 Oncon0 6369 (class class class)co 7420 2oc2o 8480 ↑m cmap 8844 ≈ cen 8960 ⊔ cdju 9921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6372 df-on 6373 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-1o 8486 df-2o 8487 df-er 8724 df-map 8846 df-en 8964 df-dom 8965 df-dju 9924 |
This theorem is referenced by: pwdju1 10213 pwdjudom 10239 canthp1lem1 10675 gchxpidm 10692 gchhar 10702 |
Copyright terms: Public domain | W3C validator |