| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwdjuen | Structured version Visualization version GIF version | ||
| Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| pwdjuen | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuex 9801 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
| 2 | pw2eng 8996 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → 𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵))) |
| 4 | 2on 8398 | . . . 4 ⊢ 2o ∈ On | |
| 5 | mapdjuen 10072 | . . . 4 ⊢ ((2o ∈ On ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) | |
| 6 | 4, 5 | mp3an1 1450 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) |
| 7 | pw2eng 8996 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) | |
| 8 | pw2eng 8996 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ (2o ↑m 𝐵)) | |
| 9 | xpen 9053 | . . . . 5 ⊢ ((𝒫 𝐴 ≈ (2o ↑m 𝐴) ∧ 𝒫 𝐵 ≈ (2o ↑m 𝐵)) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) | |
| 10 | 7, 8, 9 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) |
| 11 | enen2 9031 | . . . 4 ⊢ ((𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)) → ((2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)))) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)))) |
| 13 | 6, 12 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
| 14 | entr 8928 | . 2 ⊢ ((𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵)) ∧ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) | |
| 15 | 3, 13, 14 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4547 class class class wbr 5089 × cxp 5612 Oncon0 6306 (class class class)co 7346 2oc2o 8379 ↑m cmap 8750 ≈ cen 8866 ⊔ cdju 9791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-dju 9794 |
| This theorem is referenced by: pwdju1 10082 pwdjudom 10106 canthp1lem1 10543 gchxpidm 10560 gchhar 10570 |
| Copyright terms: Public domain | W3C validator |