MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdjuen Structured version   Visualization version   GIF version

Theorem pwdjuen 9868
Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwdjuen ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵))

Proof of Theorem pwdjuen
StepHypRef Expression
1 djuex 9597 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
2 pw2eng 8818 . . 3 ((𝐴𝐵) ∈ V → 𝒫 (𝐴𝐵) ≈ (2om (𝐴𝐵)))
31, 2syl 17 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴𝐵) ≈ (2om (𝐴𝐵)))
4 2on 8275 . . . 4 2o ∈ On
5 mapdjuen 9867 . . . 4 ((2o ∈ On ∧ 𝐴𝑉𝐵𝑊) → (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵)))
64, 5mp3an1 1446 . . 3 ((𝐴𝑉𝐵𝑊) → (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵)))
7 pw2eng 8818 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ≈ (2om 𝐴))
8 pw2eng 8818 . . . . 5 (𝐵𝑊 → 𝒫 𝐵 ≈ (2om 𝐵))
9 xpen 8876 . . . . 5 ((𝒫 𝐴 ≈ (2om 𝐴) ∧ 𝒫 𝐵 ≈ (2om 𝐵)) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2om 𝐴) × (2om 𝐵)))
107, 8, 9syl2an 595 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2om 𝐴) × (2om 𝐵)))
11 enen2 8854 . . . 4 ((𝒫 𝐴 × 𝒫 𝐵) ≈ ((2om 𝐴) × (2om 𝐵)) → ((2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵))))
1210, 11syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → ((2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵))))
136, 12mpbird 256 . 2 ((𝐴𝑉𝐵𝑊) → (2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵))
14 entr 8747 . 2 ((𝒫 (𝐴𝐵) ≈ (2om (𝐴𝐵)) ∧ (2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) → 𝒫 (𝐴𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵))
153, 13, 14syl2anc 583 1 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  Vcvv 3422  𝒫 cpw 4530   class class class wbr 5070   × cxp 5578  Oncon0 6251  (class class class)co 7255  2oc2o 8261  m cmap 8573  cen 8688  cdju 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-dju 9590
This theorem is referenced by:  pwdju1  9877  pwdjudom  9903  canthp1lem1  10339  gchxpidm  10356  gchhar  10366
  Copyright terms: Public domain W3C validator