MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdjuen Structured version   Visualization version   GIF version

Theorem pwdjuen 10251
Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwdjuen ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵))

Proof of Theorem pwdjuen
StepHypRef Expression
1 djuex 9977 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
2 pw2eng 9144 . . 3 ((𝐴𝐵) ∈ V → 𝒫 (𝐴𝐵) ≈ (2om (𝐴𝐵)))
31, 2syl 17 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴𝐵) ≈ (2om (𝐴𝐵)))
4 2on 8536 . . . 4 2o ∈ On
5 mapdjuen 10250 . . . 4 ((2o ∈ On ∧ 𝐴𝑉𝐵𝑊) → (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵)))
64, 5mp3an1 1448 . . 3 ((𝐴𝑉𝐵𝑊) → (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵)))
7 pw2eng 9144 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ≈ (2om 𝐴))
8 pw2eng 9144 . . . . 5 (𝐵𝑊 → 𝒫 𝐵 ≈ (2om 𝐵))
9 xpen 9206 . . . . 5 ((𝒫 𝐴 ≈ (2om 𝐴) ∧ 𝒫 𝐵 ≈ (2om 𝐵)) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2om 𝐴) × (2om 𝐵)))
107, 8, 9syl2an 595 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2om 𝐴) × (2om 𝐵)))
11 enen2 9184 . . . 4 ((𝒫 𝐴 × 𝒫 𝐵) ≈ ((2om 𝐴) × (2om 𝐵)) → ((2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵))))
1210, 11syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → ((2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵))))
136, 12mpbird 257 . 2 ((𝐴𝑉𝐵𝑊) → (2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵))
14 entr 9066 . 2 ((𝒫 (𝐴𝐵) ≈ (2om (𝐴𝐵)) ∧ (2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) → 𝒫 (𝐴𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵))
153, 13, 14syl2anc 583 1 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3488  𝒫 cpw 4622   class class class wbr 5166   × cxp 5698  Oncon0 6395  (class class class)co 7448  2oc2o 8516  m cmap 8884  cen 9000  cdju 9967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-dju 9970
This theorem is referenced by:  pwdju1  10260  pwdjudom  10284  canthp1lem1  10721  gchxpidm  10738  gchhar  10748
  Copyright terms: Public domain W3C validator