| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwdjuen | Structured version Visualization version GIF version | ||
| Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| pwdjuen | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djuex 9868 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
| 2 | pw2eng 9052 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → 𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵))) |
| 4 | 2on 8450 | . . . 4 ⊢ 2o ∈ On | |
| 5 | mapdjuen 10141 | . . . 4 ⊢ ((2o ∈ On ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) | |
| 6 | 4, 5 | mp3an1 1450 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) |
| 7 | pw2eng 9052 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) | |
| 8 | pw2eng 9052 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ (2o ↑m 𝐵)) | |
| 9 | xpen 9110 | . . . . 5 ⊢ ((𝒫 𝐴 ≈ (2o ↑m 𝐴) ∧ 𝒫 𝐵 ≈ (2o ↑m 𝐵)) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) | |
| 10 | 7, 8, 9 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) |
| 11 | enen2 9088 | . . . 4 ⊢ ((𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)) → ((2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)))) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)))) |
| 13 | 6, 12 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
| 14 | entr 8980 | . 2 ⊢ ((𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵)) ∧ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) | |
| 15 | 3, 13, 14 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 𝒫 cpw 4566 class class class wbr 5110 × cxp 5639 Oncon0 6335 (class class class)co 7390 2oc2o 8431 ↑m cmap 8802 ≈ cen 8918 ⊔ cdju 9858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-dju 9861 |
| This theorem is referenced by: pwdju1 10151 pwdjudom 10175 canthp1lem1 10612 gchxpidm 10629 gchhar 10639 |
| Copyright terms: Public domain | W3C validator |