MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdjuen Structured version   Visualization version   GIF version

Theorem pwdjuen 10175
Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwdjuen ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵))

Proof of Theorem pwdjuen
StepHypRef Expression
1 djuex 9902 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
2 pw2eng 9077 . . 3 ((𝐴𝐵) ∈ V → 𝒫 (𝐴𝐵) ≈ (2om (𝐴𝐵)))
31, 2syl 17 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴𝐵) ≈ (2om (𝐴𝐵)))
4 2on 8479 . . . 4 2o ∈ On
5 mapdjuen 10174 . . . 4 ((2o ∈ On ∧ 𝐴𝑉𝐵𝑊) → (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵)))
64, 5mp3an1 1448 . . 3 ((𝐴𝑉𝐵𝑊) → (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵)))
7 pw2eng 9077 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ≈ (2om 𝐴))
8 pw2eng 9077 . . . . 5 (𝐵𝑊 → 𝒫 𝐵 ≈ (2om 𝐵))
9 xpen 9139 . . . . 5 ((𝒫 𝐴 ≈ (2om 𝐴) ∧ 𝒫 𝐵 ≈ (2om 𝐵)) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2om 𝐴) × (2om 𝐵)))
107, 8, 9syl2an 596 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2om 𝐴) × (2om 𝐵)))
11 enen2 9117 . . . 4 ((𝒫 𝐴 × 𝒫 𝐵) ≈ ((2om 𝐴) × (2om 𝐵)) → ((2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵))))
1210, 11syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → ((2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵))))
136, 12mpbird 256 . 2 ((𝐴𝑉𝐵𝑊) → (2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵))
14 entr 9001 . 2 ((𝒫 (𝐴𝐵) ≈ (2om (𝐴𝐵)) ∧ (2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) → 𝒫 (𝐴𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵))
153, 13, 14syl2anc 584 1 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3474  𝒫 cpw 4602   class class class wbr 5148   × cxp 5674  Oncon0 6364  (class class class)co 7408  2oc2o 8459  m cmap 8819  cen 8935  cdju 9892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-1o 8465  df-2o 8466  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-dju 9895
This theorem is referenced by:  pwdju1  10184  pwdjudom  10210  canthp1lem1  10646  gchxpidm  10663  gchhar  10673
  Copyright terms: Public domain W3C validator