MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwdjuen Structured version   Visualization version   GIF version

Theorem pwdjuen 10111
Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
pwdjuen ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵))

Proof of Theorem pwdjuen
StepHypRef Expression
1 djuex 9837 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
2 pw2eng 9024 . . 3 ((𝐴𝐵) ∈ V → 𝒫 (𝐴𝐵) ≈ (2om (𝐴𝐵)))
31, 2syl 17 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴𝐵) ≈ (2om (𝐴𝐵)))
4 2on 8424 . . . 4 2o ∈ On
5 mapdjuen 10110 . . . 4 ((2o ∈ On ∧ 𝐴𝑉𝐵𝑊) → (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵)))
64, 5mp3an1 1450 . . 3 ((𝐴𝑉𝐵𝑊) → (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵)))
7 pw2eng 9024 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ≈ (2om 𝐴))
8 pw2eng 9024 . . . . 5 (𝐵𝑊 → 𝒫 𝐵 ≈ (2om 𝐵))
9 xpen 9081 . . . . 5 ((𝒫 𝐴 ≈ (2om 𝐴) ∧ 𝒫 𝐵 ≈ (2om 𝐵)) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2om 𝐴) × (2om 𝐵)))
107, 8, 9syl2an 596 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2om 𝐴) × (2om 𝐵)))
11 enen2 9059 . . . 4 ((𝒫 𝐴 × 𝒫 𝐵) ≈ ((2om 𝐴) × (2om 𝐵)) → ((2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵))))
1210, 11syl 17 . . 3 ((𝐴𝑉𝐵𝑊) → ((2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2om (𝐴𝐵)) ≈ ((2om 𝐴) × (2om 𝐵))))
136, 12mpbird 257 . 2 ((𝐴𝑉𝐵𝑊) → (2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵))
14 entr 8954 . 2 ((𝒫 (𝐴𝐵) ≈ (2om (𝐴𝐵)) ∧ (2om (𝐴𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) → 𝒫 (𝐴𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵))
153, 13, 14syl2anc 584 1 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  Vcvv 3444  𝒫 cpw 4559   class class class wbr 5102   × cxp 5629  Oncon0 6320  (class class class)co 7369  2oc2o 8405  m cmap 8776  cen 8892  cdju 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-dju 9830
This theorem is referenced by:  pwdju1  10120  pwdjudom  10144  canthp1lem1  10581  gchxpidm  10598  gchhar  10608
  Copyright terms: Public domain W3C validator