![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwdjuen | Structured version Visualization version GIF version |
Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
pwdjuen | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuex 9852 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
2 | pw2eng 9028 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → 𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵))) |
4 | 2on 8430 | . . . 4 ⊢ 2o ∈ On | |
5 | mapdjuen 10124 | . . . 4 ⊢ ((2o ∈ On ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) | |
6 | 4, 5 | mp3an1 1449 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) |
7 | pw2eng 9028 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) | |
8 | pw2eng 9028 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ (2o ↑m 𝐵)) | |
9 | xpen 9090 | . . . . 5 ⊢ ((𝒫 𝐴 ≈ (2o ↑m 𝐴) ∧ 𝒫 𝐵 ≈ (2o ↑m 𝐵)) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) | |
10 | 7, 8, 9 | syl2an 597 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) |
11 | enen2 9068 | . . . 4 ⊢ ((𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)) → ((2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)))) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)))) |
13 | 6, 12 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
14 | entr 8952 | . 2 ⊢ ((𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵)) ∧ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) | |
15 | 3, 13, 14 | syl2anc 585 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 Vcvv 3447 𝒫 cpw 4564 class class class wbr 5109 × cxp 5635 Oncon0 6321 (class class class)co 7361 2oc2o 8410 ↑m cmap 8771 ≈ cen 8886 ⊔ cdju 9842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-ord 6324 df-on 6325 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-1st 7925 df-2nd 7926 df-1o 8416 df-2o 8417 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-dju 9845 |
This theorem is referenced by: pwdju1 10134 pwdjudom 10160 canthp1lem1 10596 gchxpidm 10613 gchhar 10623 |
Copyright terms: Public domain | W3C validator |