Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwdjuen | Structured version Visualization version GIF version |
Description: Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
pwdjuen | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djuex 9370 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | |
2 | pw2eng 8644 | . . 3 ⊢ ((𝐴 ⊔ 𝐵) ∈ V → 𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵))) |
4 | 2on 8121 | . . . 4 ⊢ 2o ∈ On | |
5 | mapdjuen 9640 | . . . 4 ⊢ ((2o ∈ On ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) | |
6 | 4, 5 | mp3an1 1445 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) |
7 | pw2eng 8644 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≈ (2o ↑m 𝐴)) | |
8 | pw2eng 8644 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ≈ (2o ↑m 𝐵)) | |
9 | xpen 8702 | . . . . 5 ⊢ ((𝒫 𝐴 ≈ (2o ↑m 𝐴) ∧ 𝒫 𝐵 ≈ (2o ↑m 𝐵)) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) | |
10 | 7, 8, 9 | syl2an 598 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵))) |
11 | enen2 8680 | . . . 4 ⊢ ((𝒫 𝐴 × 𝒫 𝐵) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)) → ((2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)))) | |
12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵) ↔ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ ((2o ↑m 𝐴) × (2o ↑m 𝐵)))) |
13 | 6, 12 | mpbird 260 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
14 | entr 8579 | . 2 ⊢ ((𝒫 (𝐴 ⊔ 𝐵) ≈ (2o ↑m (𝐴 ⊔ 𝐵)) ∧ (2o ↑m (𝐴 ⊔ 𝐵)) ≈ (𝒫 𝐴 × 𝒫 𝐵)) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) | |
15 | 3, 13, 14 | syl2anc 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 Vcvv 3409 𝒫 cpw 4494 class class class wbr 5032 × cxp 5522 Oncon0 6169 (class class class)co 7150 2oc2o 8106 ↑m cmap 8416 ≈ cen 8524 ⊔ cdju 9360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ord 6172 df-on 6173 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-1o 8112 df-2o 8113 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-dju 9363 |
This theorem is referenced by: pwdju1 9650 pwdjudom 9676 canthp1lem1 10112 gchxpidm 10129 gchhar 10139 |
Copyright terms: Public domain | W3C validator |