MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuexALT Structured version   Visualization version   GIF version

Theorem djuexALT 9611
Description: Alternate proof of djuex 9597, which is shorter, but based indirectly on the definitions of inl and inr. (Proposed by BJ, 28-Jun-2022.) (Contributed by AV, 28-Jun-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
djuexALT ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem djuexALT
StepHypRef Expression
1 prex 5350 . . 3 {∅, 1o} ∈ V
2 unexg 7577 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
3 xpexg 7578 . . 3 (({∅, 1o} ∈ V ∧ (𝐴𝐵) ∈ V) → ({∅, 1o} × (𝐴𝐵)) ∈ V)
41, 2, 3sylancr 586 . 2 ((𝐴𝑉𝐵𝑊) → ({∅, 1o} × (𝐴𝐵)) ∈ V)
5 djuss 9609 . . 3 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
65a1i 11 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵)))
74, 6ssexd 5243 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422  cun 3881  wss 3883  c0 4253  {cpr 4560   × cxp 5578  1oc1o 8260  cdju 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-suc 6257  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805  df-1o 8267  df-dju 9590  df-inl 9591  df-inr 9592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator