|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > djuexALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of djuex 9948, which is shorter, but based indirectly on the definitions of inl and inr. (Proposed by BJ, 28-Jun-2022.) (Contributed by AV, 28-Jun-2022.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| djuexALT | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prex 5437 | . . 3 ⊢ {∅, 1o} ∈ V | |
| 2 | unexg 7763 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 3 | xpexg 7770 | . . 3 ⊢ (({∅, 1o} ∈ V ∧ (𝐴 ∪ 𝐵) ∈ V) → ({∅, 1o} × (𝐴 ∪ 𝐵)) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({∅, 1o} × (𝐴 ∪ 𝐵)) ∈ V) | 
| 5 | djuss 9960 | . . 3 ⊢ (𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) | |
| 6 | 5 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵))) | 
| 7 | 4, 6 | ssexd 5324 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3480 ∪ cun 3949 ⊆ wss 3951 ∅c0 4333 {cpr 4628 × cxp 5683 1oc1o 8499 ⊔ cdju 9938 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-suc 6390 df-iota 6514 df-fun 6563 df-fv 6569 df-1st 8014 df-2nd 8015 df-1o 8506 df-dju 9941 df-inl 9942 df-inr 9943 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |