MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuexALT Structured version   Visualization version   GIF version

Theorem djuexALT 9962
Description: Alternate proof of djuex 9948, which is shorter, but based indirectly on the definitions of inl and inr. (Proposed by BJ, 28-Jun-2022.) (Contributed by AV, 28-Jun-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
djuexALT ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem djuexALT
StepHypRef Expression
1 prex 5437 . . 3 {∅, 1o} ∈ V
2 unexg 7763 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
3 xpexg 7770 . . 3 (({∅, 1o} ∈ V ∧ (𝐴𝐵) ∈ V) → ({∅, 1o} × (𝐴𝐵)) ∈ V)
41, 2, 3sylancr 587 . 2 ((𝐴𝑉𝐵𝑊) → ({∅, 1o} × (𝐴𝐵)) ∈ V)
5 djuss 9960 . . 3 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
65a1i 11 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵)))
74, 6ssexd 5324 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3480  cun 3949  wss 3951  c0 4333  {cpr 4628   × cxp 5683  1oc1o 8499  cdju 9938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-suc 6390  df-iota 6514  df-fun 6563  df-fv 6569  df-1st 8014  df-2nd 8015  df-1o 8506  df-dju 9941  df-inl 9942  df-inr 9943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator