MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuexALT Structured version   Visualization version   GIF version

Theorem djuexALT 9936
Description: Alternate proof of djuex 9922, which is shorter, but based indirectly on the definitions of inl and inr. (Proposed by BJ, 28-Jun-2022.) (Contributed by AV, 28-Jun-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
djuexALT ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem djuexALT
StepHypRef Expression
1 prex 5407 . . 3 {∅, 1o} ∈ V
2 unexg 7737 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
3 xpexg 7744 . . 3 (({∅, 1o} ∈ V ∧ (𝐴𝐵) ∈ V) → ({∅, 1o} × (𝐴𝐵)) ∈ V)
41, 2, 3sylancr 587 . 2 ((𝐴𝑉𝐵𝑊) → ({∅, 1o} × (𝐴𝐵)) ∈ V)
5 djuss 9934 . . 3 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
65a1i 11 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵)))
74, 6ssexd 5294 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3459  cun 3924  wss 3926  c0 4308  {cpr 4603   × cxp 5652  1oc1o 8473  cdju 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-suc 6358  df-iota 6484  df-fun 6533  df-fv 6539  df-1st 7988  df-2nd 7989  df-1o 8480  df-dju 9915  df-inl 9916  df-inr 9917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator