| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djuexALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of djuex 9868, which is shorter, but based indirectly on the definitions of inl and inr. (Proposed by BJ, 28-Jun-2022.) (Contributed by AV, 28-Jun-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| djuexALT | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex 5395 | . . 3 ⊢ {∅, 1o} ∈ V | |
| 2 | unexg 7722 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
| 3 | xpexg 7729 | . . 3 ⊢ (({∅, 1o} ∈ V ∧ (𝐴 ∪ 𝐵) ∈ V) → ({∅, 1o} × (𝐴 ∪ 𝐵)) ∈ V) | |
| 4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({∅, 1o} × (𝐴 ∪ 𝐵)) ∈ V) |
| 5 | djuss 9880 | . . 3 ⊢ (𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵)) | |
| 6 | 5 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} × (𝐴 ∪ 𝐵))) |
| 7 | 4, 6 | ssexd 5282 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 ∅c0 4299 {cpr 4594 × cxp 5639 1oc1o 8430 ⊔ cdju 9858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-suc 6341 df-iota 6467 df-fun 6516 df-fv 6522 df-1st 7971 df-2nd 7972 df-1o 8437 df-dju 9861 df-inl 9862 df-inr 9863 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |