| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdivdmmbl2 | Structured version Visualization version GIF version | ||
| Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of [Fremlin1] p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| Ref | Expression |
|---|---|
| smfdivdmmbl2.1 | ⊢ Ⅎ𝑥𝜑 |
| smfdivdmmbl2.2 | ⊢ Ⅎ𝑥𝐹 |
| smfdivdmmbl2.3 | ⊢ Ⅎ𝑥𝐺 |
| smfdivdmmbl2.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfdivdmmbl2.5 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
| smfdivdmmbl2.6 | ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |
| smfdivdmmbl2.7 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| smfdivdmmbl2.8 | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| smfdivdmmbl2.9 | ⊢ 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} |
| smfdivdmmbl2.10 | ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ 𝐷) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) |
| Ref | Expression |
|---|---|
| smfdivdmmbl2 | ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfdivdmmbl2.2 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 2 | 1 | nfdm 5888 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
| 3 | smfdivdmmbl2.9 | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} | |
| 4 | nfrab1 3413 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} | |
| 5 | 3, 4 | nfcxfr 2890 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
| 6 | 2, 5 | nfin 4172 | . . 3 ⊢ Ⅎ𝑥(dom 𝐹 ∩ 𝐷) |
| 7 | ovex 7374 | . . 3 ⊢ ((𝐹‘𝑥) / (𝐺‘𝑥)) ∈ V | |
| 8 | smfdivdmmbl2.10 | . . 3 ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ 𝐷) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) | |
| 9 | 6, 7, 8 | dmmptif 45282 | . 2 ⊢ dom 𝐻 = (dom 𝐹 ∩ 𝐷) |
| 10 | smfdivdmmbl2.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 11 | smfdivdmmbl2.5 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) | |
| 12 | 11 | fdmd 6657 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 13 | smfdivdmmbl2.7 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 14 | 12, 13 | eqeltrd 2829 | . . 3 ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) |
| 15 | smfdivdmmbl2.8 | . . . . 5 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | |
| 16 | 10, 15 | salrestss 46378 | . . . 4 ⊢ (𝜑 → (𝑆 ↾t dom 𝐺) ⊆ 𝑆) |
| 17 | smfdivdmmbl2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 18 | smfdivdmmbl2.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐺 | |
| 19 | smfdivdmmbl2.6 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | |
| 20 | eqid 2730 | . . . . . 6 ⊢ dom 𝐺 = dom 𝐺 | |
| 21 | 17, 18, 10, 19, 20 | smfpimne2 46857 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} ∈ (𝑆 ↾t dom 𝐺)) |
| 22 | 3, 21 | eqeltrid 2833 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t dom 𝐺)) |
| 23 | 16, 22 | sseldd 3933 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑆) |
| 24 | 10, 14, 23 | salincld 46369 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐷) ∈ 𝑆) |
| 25 | 9, 24 | eqeltrid 2833 | 1 ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2110 Ⅎwnfc 2877 ≠ wne 2926 {crab 3393 ∩ cin 3899 ↦ cmpt 5170 dom cdm 5614 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 0cc0 10998 / cdiv 11766 ↾t crest 17316 SAlgcsalg 46325 SMblFncsmblfn 46712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cc 10318 ax-ac2 10346 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-card 9824 df-acn 9827 df-ac 9999 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-ioo 13241 df-ico 13243 df-fl 13688 df-rest 17318 df-salg 46326 df-smblfn 46713 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |