Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdivdmmbl2 | Structured version Visualization version GIF version |
Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of [Fremlin1] p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
smfdivdmmbl2.1 | ⊢ Ⅎ𝑥𝜑 |
smfdivdmmbl2.2 | ⊢ Ⅎ𝑥𝐹 |
smfdivdmmbl2.3 | ⊢ Ⅎ𝑥𝐺 |
smfdivdmmbl2.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfdivdmmbl2.5 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
smfdivdmmbl2.6 | ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |
smfdivdmmbl2.7 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
smfdivdmmbl2.8 | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
smfdivdmmbl2.9 | ⊢ 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} |
smfdivdmmbl2.10 | ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ 𝐷) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) |
Ref | Expression |
---|---|
smfdivdmmbl2 | ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfdivdmmbl2.2 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
2 | 1 | nfdm 5879 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
3 | smfdivdmmbl2.9 | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} | |
4 | nfrab1 3421 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} | |
5 | 3, 4 | nfcxfr 2903 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
6 | 2, 5 | nfin 4161 | . . 3 ⊢ Ⅎ𝑥(dom 𝐹 ∩ 𝐷) |
7 | ovex 7348 | . . 3 ⊢ ((𝐹‘𝑥) / (𝐺‘𝑥)) ∈ V | |
8 | smfdivdmmbl2.10 | . . 3 ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ 𝐷) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) | |
9 | 6, 7, 8 | dmmptif 43043 | . 2 ⊢ dom 𝐻 = (dom 𝐹 ∩ 𝐷) |
10 | smfdivdmmbl2.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
11 | smfdivdmmbl2.5 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) | |
12 | 11 | fdmd 6648 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
13 | smfdivdmmbl2.7 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
14 | 12, 13 | eqeltrd 2838 | . . 3 ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) |
15 | smfdivdmmbl2.8 | . . . . 5 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | |
16 | 10, 15 | salrestss 44137 | . . . 4 ⊢ (𝜑 → (𝑆 ↾t dom 𝐺) ⊆ 𝑆) |
17 | smfdivdmmbl2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
18 | smfdivdmmbl2.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐺 | |
19 | smfdivdmmbl2.6 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | |
20 | eqid 2737 | . . . . . 6 ⊢ dom 𝐺 = dom 𝐺 | |
21 | 17, 18, 10, 19, 20 | smfpimne2 44616 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} ∈ (𝑆 ↾t dom 𝐺)) |
22 | 3, 21 | eqeltrid 2842 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t dom 𝐺)) |
23 | 16, 22 | sseldd 3932 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑆) |
24 | 10, 14, 23 | salincld 44128 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐷) ∈ 𝑆) |
25 | 9, 24 | eqeltrid 2842 | 1 ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2885 ≠ wne 2941 {crab 3404 ∩ cin 3896 ↦ cmpt 5170 dom cdm 5607 ⟶wf 6461 ‘cfv 6465 (class class class)co 7315 0cc0 10944 / cdiv 11705 ↾t crest 17201 SAlgcsalg 44086 SMblFncsmblfn 44471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-inf2 9470 ax-cc 10264 ax-ac2 10292 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-map 8665 df-pm 8666 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-sup 9271 df-inf 9272 df-card 9768 df-acn 9771 df-ac 9945 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-n0 12307 df-z 12393 df-uz 12656 df-q 12762 df-rp 12804 df-ioo 13156 df-ico 13158 df-fl 13585 df-rest 17203 df-salg 44087 df-smblfn 44472 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |