| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdivdmmbl2 | Structured version Visualization version GIF version | ||
| Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of [Fremlin1] p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| Ref | Expression |
|---|---|
| smfdivdmmbl2.1 | ⊢ Ⅎ𝑥𝜑 |
| smfdivdmmbl2.2 | ⊢ Ⅎ𝑥𝐹 |
| smfdivdmmbl2.3 | ⊢ Ⅎ𝑥𝐺 |
| smfdivdmmbl2.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfdivdmmbl2.5 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
| smfdivdmmbl2.6 | ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |
| smfdivdmmbl2.7 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| smfdivdmmbl2.8 | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| smfdivdmmbl2.9 | ⊢ 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} |
| smfdivdmmbl2.10 | ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ 𝐷) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) |
| Ref | Expression |
|---|---|
| smfdivdmmbl2 | ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfdivdmmbl2.2 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 2 | 1 | nfdm 5896 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
| 3 | smfdivdmmbl2.9 | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} | |
| 4 | nfrab1 3415 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} | |
| 5 | 3, 4 | nfcxfr 2892 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
| 6 | 2, 5 | nfin 4173 | . . 3 ⊢ Ⅎ𝑥(dom 𝐹 ∩ 𝐷) |
| 7 | ovex 7385 | . . 3 ⊢ ((𝐹‘𝑥) / (𝐺‘𝑥)) ∈ V | |
| 8 | smfdivdmmbl2.10 | . . 3 ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ 𝐷) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) | |
| 9 | 6, 7, 8 | dmmptif 45368 | . 2 ⊢ dom 𝐻 = (dom 𝐹 ∩ 𝐷) |
| 10 | smfdivdmmbl2.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 11 | smfdivdmmbl2.5 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) | |
| 12 | 11 | fdmd 6667 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 13 | smfdivdmmbl2.7 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 14 | 12, 13 | eqeltrd 2831 | . . 3 ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) |
| 15 | smfdivdmmbl2.8 | . . . . 5 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | |
| 16 | 10, 15 | salrestss 46464 | . . . 4 ⊢ (𝜑 → (𝑆 ↾t dom 𝐺) ⊆ 𝑆) |
| 17 | smfdivdmmbl2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 18 | smfdivdmmbl2.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐺 | |
| 19 | smfdivdmmbl2.6 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | |
| 20 | eqid 2731 | . . . . . 6 ⊢ dom 𝐺 = dom 𝐺 | |
| 21 | 17, 18, 10, 19, 20 | smfpimne2 46943 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} ∈ (𝑆 ↾t dom 𝐺)) |
| 22 | 3, 21 | eqeltrid 2835 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t dom 𝐺)) |
| 23 | 16, 22 | sseldd 3930 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑆) |
| 24 | 10, 14, 23 | salincld 46455 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐷) ∈ 𝑆) |
| 25 | 9, 24 | eqeltrid 2835 | 1 ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ≠ wne 2928 {crab 3395 ∩ cin 3896 ↦ cmpt 5174 dom cdm 5619 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 0cc0 11012 / cdiv 11780 ↾t crest 17330 SAlgcsalg 46411 SMblFncsmblfn 46798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cc 10332 ax-ac2 10360 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9332 df-inf 9333 df-card 9838 df-acn 9841 df-ac 10013 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-n0 12388 df-z 12475 df-uz 12739 df-q 12853 df-rp 12897 df-ioo 13255 df-ico 13257 df-fl 13702 df-rest 17332 df-salg 46412 df-smblfn 46799 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |