Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfdivdmmbl2 Structured version   Visualization version   GIF version

Theorem smfdivdmmbl2 46762
Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of [Fremlin1] p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
smfdivdmmbl2.1 𝑥𝜑
smfdivdmmbl2.2 𝑥𝐹
smfdivdmmbl2.3 𝑥𝐺
smfdivdmmbl2.4 (𝜑𝑆 ∈ SAlg)
smfdivdmmbl2.5 (𝜑𝐹:𝐴𝑉)
smfdivdmmbl2.6 (𝜑𝐺 ∈ (SMblFn‘𝑆))
smfdivdmmbl2.7 (𝜑𝐴𝑆)
smfdivdmmbl2.8 (𝜑 → dom 𝐺𝑆)
smfdivdmmbl2.9 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺𝑥) ≠ 0}
smfdivdmmbl2.10 𝐻 = (𝑥 ∈ (dom 𝐹𝐷) ↦ ((𝐹𝑥) / (𝐺𝑥)))
Assertion
Ref Expression
smfdivdmmbl2 (𝜑 → dom 𝐻𝑆)

Proof of Theorem smfdivdmmbl2
StepHypRef Expression
1 smfdivdmmbl2.2 . . . . 5 𝑥𝐹
21nfdm 5976 . . . 4 𝑥dom 𝐹
3 smfdivdmmbl2.9 . . . . 5 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺𝑥) ≠ 0}
4 nfrab1 3464 . . . . 5 𝑥{𝑥 ∈ dom 𝐺 ∣ (𝐺𝑥) ≠ 0}
53, 4nfcxfr 2906 . . . 4 𝑥𝐷
62, 5nfin 4245 . . 3 𝑥(dom 𝐹𝐷)
7 ovex 7481 . . 3 ((𝐹𝑥) / (𝐺𝑥)) ∈ V
8 smfdivdmmbl2.10 . . 3 𝐻 = (𝑥 ∈ (dom 𝐹𝐷) ↦ ((𝐹𝑥) / (𝐺𝑥)))
96, 7, 8dmmptif 45176 . 2 dom 𝐻 = (dom 𝐹𝐷)
10 smfdivdmmbl2.4 . . 3 (𝜑𝑆 ∈ SAlg)
11 smfdivdmmbl2.5 . . . . 5 (𝜑𝐹:𝐴𝑉)
1211fdmd 6757 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
13 smfdivdmmbl2.7 . . . 4 (𝜑𝐴𝑆)
1412, 13eqeltrd 2844 . . 3 (𝜑 → dom 𝐹𝑆)
15 smfdivdmmbl2.8 . . . . 5 (𝜑 → dom 𝐺𝑆)
1610, 15salrestss 46282 . . . 4 (𝜑 → (𝑆t dom 𝐺) ⊆ 𝑆)
17 smfdivdmmbl2.1 . . . . . 6 𝑥𝜑
18 smfdivdmmbl2.3 . . . . . 6 𝑥𝐺
19 smfdivdmmbl2.6 . . . . . 6 (𝜑𝐺 ∈ (SMblFn‘𝑆))
20 eqid 2740 . . . . . 6 dom 𝐺 = dom 𝐺
2117, 18, 10, 19, 20smfpimne2 46761 . . . . 5 (𝜑 → {𝑥 ∈ dom 𝐺 ∣ (𝐺𝑥) ≠ 0} ∈ (𝑆t dom 𝐺))
223, 21eqeltrid 2848 . . . 4 (𝜑𝐷 ∈ (𝑆t dom 𝐺))
2316, 22sseldd 4009 . . 3 (𝜑𝐷𝑆)
2410, 14, 23salincld 46273 . 2 (𝜑 → (dom 𝐹𝐷) ∈ 𝑆)
259, 24eqeltrid 2848 1 (𝜑 → dom 𝐻𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  wne 2946  {crab 3443  cin 3975  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184   / cdiv 11947  t crest 17480  SAlgcsalg 46229  SMblFncsmblfn 46616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ioo 13411  df-ico 13413  df-fl 13843  df-rest 17482  df-salg 46230  df-smblfn 46617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator