Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfdivdmmbl2 Structured version   Visualization version   GIF version

Theorem smfdivdmmbl2 44617
Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of [Fremlin1] p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
smfdivdmmbl2.1 𝑥𝜑
smfdivdmmbl2.2 𝑥𝐹
smfdivdmmbl2.3 𝑥𝐺
smfdivdmmbl2.4 (𝜑𝑆 ∈ SAlg)
smfdivdmmbl2.5 (𝜑𝐹:𝐴𝑉)
smfdivdmmbl2.6 (𝜑𝐺 ∈ (SMblFn‘𝑆))
smfdivdmmbl2.7 (𝜑𝐴𝑆)
smfdivdmmbl2.8 (𝜑 → dom 𝐺𝑆)
smfdivdmmbl2.9 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺𝑥) ≠ 0}
smfdivdmmbl2.10 𝐻 = (𝑥 ∈ (dom 𝐹𝐷) ↦ ((𝐹𝑥) / (𝐺𝑥)))
Assertion
Ref Expression
smfdivdmmbl2 (𝜑 → dom 𝐻𝑆)

Proof of Theorem smfdivdmmbl2
StepHypRef Expression
1 smfdivdmmbl2.2 . . . . 5 𝑥𝐹
21nfdm 5879 . . . 4 𝑥dom 𝐹
3 smfdivdmmbl2.9 . . . . 5 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺𝑥) ≠ 0}
4 nfrab1 3421 . . . . 5 𝑥{𝑥 ∈ dom 𝐺 ∣ (𝐺𝑥) ≠ 0}
53, 4nfcxfr 2903 . . . 4 𝑥𝐷
62, 5nfin 4161 . . 3 𝑥(dom 𝐹𝐷)
7 ovex 7348 . . 3 ((𝐹𝑥) / (𝐺𝑥)) ∈ V
8 smfdivdmmbl2.10 . . 3 𝐻 = (𝑥 ∈ (dom 𝐹𝐷) ↦ ((𝐹𝑥) / (𝐺𝑥)))
96, 7, 8dmmptif 43043 . 2 dom 𝐻 = (dom 𝐹𝐷)
10 smfdivdmmbl2.4 . . 3 (𝜑𝑆 ∈ SAlg)
11 smfdivdmmbl2.5 . . . . 5 (𝜑𝐹:𝐴𝑉)
1211fdmd 6648 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
13 smfdivdmmbl2.7 . . . 4 (𝜑𝐴𝑆)
1412, 13eqeltrd 2838 . . 3 (𝜑 → dom 𝐹𝑆)
15 smfdivdmmbl2.8 . . . . 5 (𝜑 → dom 𝐺𝑆)
1610, 15salrestss 44137 . . . 4 (𝜑 → (𝑆t dom 𝐺) ⊆ 𝑆)
17 smfdivdmmbl2.1 . . . . . 6 𝑥𝜑
18 smfdivdmmbl2.3 . . . . . 6 𝑥𝐺
19 smfdivdmmbl2.6 . . . . . 6 (𝜑𝐺 ∈ (SMblFn‘𝑆))
20 eqid 2737 . . . . . 6 dom 𝐺 = dom 𝐺
2117, 18, 10, 19, 20smfpimne2 44616 . . . . 5 (𝜑 → {𝑥 ∈ dom 𝐺 ∣ (𝐺𝑥) ≠ 0} ∈ (𝑆t dom 𝐺))
223, 21eqeltrid 2842 . . . 4 (𝜑𝐷 ∈ (𝑆t dom 𝐺))
2316, 22sseldd 3932 . . 3 (𝜑𝐷𝑆)
2410, 14, 23salincld 44128 . 2 (𝜑 → (dom 𝐹𝐷) ∈ 𝑆)
259, 24eqeltrid 2842 1 (𝜑 → dom 𝐻𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnf 1784  wcel 2105  wnfc 2885  wne 2941  {crab 3404  cin 3896  cmpt 5170  dom cdm 5607  wf 6461  cfv 6465  (class class class)co 7315  0cc0 10944   / cdiv 11705  t crest 17201  SAlgcsalg 44086  SMblFncsmblfn 44471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-inf2 9470  ax-cc 10264  ax-ac2 10292  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021  ax-pre-sup 11022
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-1st 7876  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-1o 8344  df-er 8546  df-map 8665  df-pm 8666  df-en 8782  df-dom 8783  df-sdom 8784  df-fin 8785  df-sup 9271  df-inf 9272  df-card 9768  df-acn 9771  df-ac 9945  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-div 11706  df-nn 12047  df-n0 12307  df-z 12393  df-uz 12656  df-q 12762  df-rp 12804  df-ioo 13156  df-ico 13158  df-fl 13585  df-rest 17203  df-salg 44087  df-smblfn 44472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator