Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdivdmmbl2 | Structured version Visualization version GIF version |
Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of [Fremlin1] p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
smfdivdmmbl2.1 | ⊢ Ⅎ𝑥𝜑 |
smfdivdmmbl2.2 | ⊢ Ⅎ𝑥𝐹 |
smfdivdmmbl2.3 | ⊢ Ⅎ𝑥𝐺 |
smfdivdmmbl2.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfdivdmmbl2.5 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
smfdivdmmbl2.6 | ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |
smfdivdmmbl2.7 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
smfdivdmmbl2.8 | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
smfdivdmmbl2.9 | ⊢ 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} |
smfdivdmmbl2.10 | ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ 𝐷) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) |
Ref | Expression |
---|---|
smfdivdmmbl2 | ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfdivdmmbl2.2 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
2 | 1 | nfdm 5872 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
3 | smfdivdmmbl2.9 | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} | |
4 | nfrab1 3361 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} | |
5 | 3, 4 | nfcxfr 2902 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
6 | 2, 5 | nfin 4156 | . . 3 ⊢ Ⅎ𝑥(dom 𝐹 ∩ 𝐷) |
7 | ovex 7340 | . . 3 ⊢ ((𝐹‘𝑥) / (𝐺‘𝑥)) ∈ V | |
8 | smfdivdmmbl2.10 | . . 3 ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ 𝐷) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) | |
9 | 6, 7, 8 | dmmptif 43035 | . 2 ⊢ dom 𝐻 = (dom 𝐹 ∩ 𝐷) |
10 | smfdivdmmbl2.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
11 | smfdivdmmbl2.5 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) | |
12 | 11 | fdmd 6641 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
13 | smfdivdmmbl2.7 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
14 | 12, 13 | eqeltrd 2837 | . . 3 ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) |
15 | smfdivdmmbl2.8 | . . . . 5 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | |
16 | 10, 15 | salrestss 44129 | . . . 4 ⊢ (𝜑 → (𝑆 ↾t dom 𝐺) ⊆ 𝑆) |
17 | smfdivdmmbl2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
18 | smfdivdmmbl2.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐺 | |
19 | smfdivdmmbl2.6 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | |
20 | eqid 2736 | . . . . . 6 ⊢ dom 𝐺 = dom 𝐺 | |
21 | 17, 18, 10, 19, 20 | smfpimne2 44608 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} ∈ (𝑆 ↾t dom 𝐺)) |
22 | 3, 21 | eqeltrid 2841 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t dom 𝐺)) |
23 | 16, 22 | sseldd 3927 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑆) |
24 | 10, 14, 23 | salincld 44120 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐷) ∈ 𝑆) |
25 | 9, 24 | eqeltrid 2841 | 1 ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 Ⅎwnfc 2884 ≠ wne 2940 {crab 3330 ∩ cin 3891 ↦ cmpt 5164 dom cdm 5600 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 0cc0 10921 / cdiv 11682 ↾t crest 17180 SAlgcsalg 44078 SMblFncsmblfn 44463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cc 10241 ax-ac2 10269 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3331 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9249 df-inf 9250 df-card 9745 df-acn 9748 df-ac 9922 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-n0 12284 df-z 12370 df-uz 12633 df-q 12739 df-rp 12781 df-ioo 13133 df-ico 13135 df-fl 13562 df-rest 17182 df-salg 44079 df-smblfn 44464 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |