| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfdivdmmbl2 | Structured version Visualization version GIF version | ||
| Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of [Fremlin1] p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| Ref | Expression |
|---|---|
| smfdivdmmbl2.1 | ⊢ Ⅎ𝑥𝜑 |
| smfdivdmmbl2.2 | ⊢ Ⅎ𝑥𝐹 |
| smfdivdmmbl2.3 | ⊢ Ⅎ𝑥𝐺 |
| smfdivdmmbl2.4 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfdivdmmbl2.5 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
| smfdivdmmbl2.6 | ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |
| smfdivdmmbl2.7 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| smfdivdmmbl2.8 | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| smfdivdmmbl2.9 | ⊢ 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} |
| smfdivdmmbl2.10 | ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ 𝐷) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) |
| Ref | Expression |
|---|---|
| smfdivdmmbl2 | ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfdivdmmbl2.2 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 2 | 1 | nfdm 5897 | . . . 4 ⊢ Ⅎ𝑥dom 𝐹 |
| 3 | smfdivdmmbl2.9 | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} | |
| 4 | nfrab1 3417 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} | |
| 5 | 3, 4 | nfcxfr 2889 | . . . 4 ⊢ Ⅎ𝑥𝐷 |
| 6 | 2, 5 | nfin 4177 | . . 3 ⊢ Ⅎ𝑥(dom 𝐹 ∩ 𝐷) |
| 7 | ovex 7386 | . . 3 ⊢ ((𝐹‘𝑥) / (𝐺‘𝑥)) ∈ V | |
| 8 | smfdivdmmbl2.10 | . . 3 ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ 𝐷) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) | |
| 9 | 6, 7, 8 | dmmptif 45244 | . 2 ⊢ dom 𝐻 = (dom 𝐹 ∩ 𝐷) |
| 10 | smfdivdmmbl2.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 11 | smfdivdmmbl2.5 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) | |
| 12 | 11 | fdmd 6666 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 13 | smfdivdmmbl2.7 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 14 | 12, 13 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) |
| 15 | smfdivdmmbl2.8 | . . . . 5 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | |
| 16 | 10, 15 | salrestss 46343 | . . . 4 ⊢ (𝜑 → (𝑆 ↾t dom 𝐺) ⊆ 𝑆) |
| 17 | smfdivdmmbl2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 18 | smfdivdmmbl2.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐺 | |
| 19 | smfdivdmmbl2.6 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | |
| 20 | eqid 2729 | . . . . . 6 ⊢ dom 𝐺 = dom 𝐺 | |
| 21 | 17, 18, 10, 19, 20 | smfpimne2 46822 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ dom 𝐺 ∣ (𝐺‘𝑥) ≠ 0} ∈ (𝑆 ↾t dom 𝐺)) |
| 22 | 3, 21 | eqeltrid 2832 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t dom 𝐺)) |
| 23 | 16, 22 | sseldd 3938 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑆) |
| 24 | 10, 14, 23 | salincld 46334 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐷) ∈ 𝑆) |
| 25 | 9, 24 | eqeltrid 2832 | 1 ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ≠ wne 2925 {crab 3396 ∩ cin 3904 ↦ cmpt 5176 dom cdm 5623 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 0cc0 11028 / cdiv 11795 ↾t crest 17342 SAlgcsalg 46290 SMblFncsmblfn 46677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cc 10348 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-ioo 13270 df-ico 13272 df-fl 13714 df-rest 17344 df-salg 46291 df-smblfn 46678 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |