| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > muldmmbl2 | Structured version Visualization version GIF version | ||
| Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| muldmmbl2.1 | ⊢ Ⅎ𝑥𝐹 |
| muldmmbl2.2 | ⊢ Ⅎ𝑥𝐺 |
| muldmmbl2.3 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| muldmmbl2.4 | ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) |
| muldmmbl2.5 | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| muldmmbl2.6 | ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) |
| Ref | Expression |
|---|---|
| muldmmbl2 | ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muldmmbl2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 2 | 1 | nfdm 5915 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐹 |
| 3 | muldmmbl2.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐺 | |
| 4 | 3 | nfdm 5915 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐺 |
| 5 | 2, 4 | nfin 4187 | . . . 4 ⊢ Ⅎ𝑥(dom 𝐹 ∩ dom 𝐺) |
| 6 | ovex 7420 | . . . 4 ⊢ ((𝐹‘𝑥) · (𝐺‘𝑥)) ∈ V | |
| 7 | muldmmbl2.6 | . . . 4 ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) | |
| 8 | 5, 6, 7 | dmmptif 45260 | . . 3 ⊢ dom 𝐻 = (dom 𝐹 ∩ dom 𝐺) |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)) |
| 10 | muldmmbl2.3 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 11 | muldmmbl2.4 | . . 3 ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) | |
| 12 | muldmmbl2.5 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | |
| 13 | 10, 11, 12 | salincld 46350 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆) |
| 14 | 9, 13 | eqeltrd 2828 | 1 ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 ∩ cin 3913 ↦ cmpt 5188 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 · cmul 11073 SAlgcsalg 46306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-salg 46307 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |