| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > muldmmbl2 | Structured version Visualization version GIF version | ||
| Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| muldmmbl2.1 | ⊢ Ⅎ𝑥𝐹 |
| muldmmbl2.2 | ⊢ Ⅎ𝑥𝐺 |
| muldmmbl2.3 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| muldmmbl2.4 | ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) |
| muldmmbl2.5 | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| muldmmbl2.6 | ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) |
| Ref | Expression |
|---|---|
| muldmmbl2 | ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muldmmbl2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 2 | 1 | nfdm 5923 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐹 |
| 3 | muldmmbl2.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐺 | |
| 4 | 3 | nfdm 5923 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐺 |
| 5 | 2, 4 | nfin 4195 | . . . 4 ⊢ Ⅎ𝑥(dom 𝐹 ∩ dom 𝐺) |
| 6 | ovex 7427 | . . . 4 ⊢ ((𝐹‘𝑥) · (𝐺‘𝑥)) ∈ V | |
| 7 | muldmmbl2.6 | . . . 4 ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) | |
| 8 | 5, 6, 7 | dmmptif 45232 | . . 3 ⊢ dom 𝐻 = (dom 𝐹 ∩ dom 𝐺) |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)) |
| 10 | muldmmbl2.3 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 11 | muldmmbl2.4 | . . 3 ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) | |
| 12 | muldmmbl2.5 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | |
| 13 | 10, 11, 12 | salincld 46323 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆) |
| 14 | 9, 13 | eqeltrd 2829 | 1 ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2878 ∩ cin 3921 ↦ cmpt 5196 dom cdm 5646 ‘cfv 6519 (class class class)co 7394 · cmul 11091 SAlgcsalg 46279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-salg 46280 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |