Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  muldmmbl2 Structured version   Visualization version   GIF version

Theorem muldmmbl2 46882
Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
muldmmbl2.1 𝑥𝐹
muldmmbl2.2 𝑥𝐺
muldmmbl2.3 (𝜑𝑆 ∈ SAlg)
muldmmbl2.4 (𝜑 → dom 𝐹𝑆)
muldmmbl2.5 (𝜑 → dom 𝐺𝑆)
muldmmbl2.6 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥)))
Assertion
Ref Expression
muldmmbl2 (𝜑 → dom 𝐻𝑆)

Proof of Theorem muldmmbl2
StepHypRef Expression
1 muldmmbl2.1 . . . . . 6 𝑥𝐹
21nfdm 5890 . . . . 5 𝑥dom 𝐹
3 muldmmbl2.2 . . . . . 6 𝑥𝐺
43nfdm 5890 . . . . 5 𝑥dom 𝐺
52, 4nfin 4171 . . . 4 𝑥(dom 𝐹 ∩ dom 𝐺)
6 ovex 7379 . . . 4 ((𝐹𝑥) · (𝐺𝑥)) ∈ V
7 muldmmbl2.6 . . . 4 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥)))
85, 6, 7dmmptif 45311 . . 3 dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)
98a1i 11 . 2 (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺))
10 muldmmbl2.3 . . 3 (𝜑𝑆 ∈ SAlg)
11 muldmmbl2.4 . . 3 (𝜑 → dom 𝐹𝑆)
12 muldmmbl2.5 . . 3 (𝜑 → dom 𝐺𝑆)
1310, 11, 12salincld 46398 . 2 (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆)
149, 13eqeltrd 2831 1 (𝜑 → dom 𝐻𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wnfc 2879  cin 3896  cmpt 5170  dom cdm 5614  cfv 6481  (class class class)co 7346   · cmul 11011  SAlgcsalg 46354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-salg 46355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator