![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > muldmmbl2 | Structured version Visualization version GIF version |
Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
Ref | Expression |
---|---|
muldmmbl2.1 | ⊢ Ⅎ𝑥𝐹 |
muldmmbl2.2 | ⊢ Ⅎ𝑥𝐺 |
muldmmbl2.3 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
muldmmbl2.4 | ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) |
muldmmbl2.5 | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
muldmmbl2.6 | ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) |
Ref | Expression |
---|---|
muldmmbl2 | ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muldmmbl2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
2 | 1 | nfdm 5966 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐹 |
3 | muldmmbl2.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐺 | |
4 | 3 | nfdm 5966 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐺 |
5 | 2, 4 | nfin 4233 | . . . 4 ⊢ Ⅎ𝑥(dom 𝐹 ∩ dom 𝐺) |
6 | ovex 7468 | . . . 4 ⊢ ((𝐹‘𝑥) · (𝐺‘𝑥)) ∈ V | |
7 | muldmmbl2.6 | . . . 4 ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) | |
8 | 5, 6, 7 | dmmptif 45224 | . . 3 ⊢ dom 𝐻 = (dom 𝐹 ∩ dom 𝐺) |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)) |
10 | muldmmbl2.3 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
11 | muldmmbl2.4 | . . 3 ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) | |
12 | muldmmbl2.5 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | |
13 | 10, 11, 12 | salincld 46319 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆) |
14 | 9, 13 | eqeltrd 2840 | 1 ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 Ⅎwnfc 2889 ∩ cin 3963 ↦ cmpt 5232 dom cdm 5690 ‘cfv 6566 (class class class)co 7435 · cmul 11164 SAlgcsalg 46275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-inf2 9685 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-ov 7438 df-om 7892 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-salg 46276 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |