Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  muldmmbl2 Structured version   Visualization version   GIF version

Theorem muldmmbl2 46796
Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
muldmmbl2.1 𝑥𝐹
muldmmbl2.2 𝑥𝐺
muldmmbl2.3 (𝜑𝑆 ∈ SAlg)
muldmmbl2.4 (𝜑 → dom 𝐹𝑆)
muldmmbl2.5 (𝜑 → dom 𝐺𝑆)
muldmmbl2.6 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥)))
Assertion
Ref Expression
muldmmbl2 (𝜑 → dom 𝐻𝑆)

Proof of Theorem muldmmbl2
StepHypRef Expression
1 muldmmbl2.1 . . . . . 6 𝑥𝐹
21nfdm 5944 . . . . 5 𝑥dom 𝐹
3 muldmmbl2.2 . . . . . 6 𝑥𝐺
43nfdm 5944 . . . . 5 𝑥dom 𝐺
52, 4nfin 4206 . . . 4 𝑥(dom 𝐹 ∩ dom 𝐺)
6 ovex 7447 . . . 4 ((𝐹𝑥) · (𝐺𝑥)) ∈ V
7 muldmmbl2.6 . . . 4 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥)))
85, 6, 7dmmptif 45218 . . 3 dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)
98a1i 11 . 2 (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺))
10 muldmmbl2.3 . . 3 (𝜑𝑆 ∈ SAlg)
11 muldmmbl2.4 . . 3 (𝜑 → dom 𝐹𝑆)
12 muldmmbl2.5 . . 3 (𝜑 → dom 𝐺𝑆)
1310, 11, 12salincld 46312 . 2 (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆)
149, 13eqeltrd 2833 1 (𝜑 → dom 𝐻𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wnfc 2882  cin 3932  cmpt 5207  dom cdm 5667  cfv 6542  (class class class)co 7414   · cmul 11143  SAlgcsalg 46268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-salg 46269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator