Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  muldmmbl2 Structured version   Visualization version   GIF version

Theorem muldmmbl2 46807
Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
muldmmbl2.1 𝑥𝐹
muldmmbl2.2 𝑥𝐺
muldmmbl2.3 (𝜑𝑆 ∈ SAlg)
muldmmbl2.4 (𝜑 → dom 𝐹𝑆)
muldmmbl2.5 (𝜑 → dom 𝐺𝑆)
muldmmbl2.6 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥)))
Assertion
Ref Expression
muldmmbl2 (𝜑 → dom 𝐻𝑆)

Proof of Theorem muldmmbl2
StepHypRef Expression
1 muldmmbl2.1 . . . . . 6 𝑥𝐹
21nfdm 5923 . . . . 5 𝑥dom 𝐹
3 muldmmbl2.2 . . . . . 6 𝑥𝐺
43nfdm 5923 . . . . 5 𝑥dom 𝐺
52, 4nfin 4195 . . . 4 𝑥(dom 𝐹 ∩ dom 𝐺)
6 ovex 7427 . . . 4 ((𝐹𝑥) · (𝐺𝑥)) ∈ V
7 muldmmbl2.6 . . . 4 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥)))
85, 6, 7dmmptif 45232 . . 3 dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)
98a1i 11 . 2 (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺))
10 muldmmbl2.3 . . 3 (𝜑𝑆 ∈ SAlg)
11 muldmmbl2.4 . . 3 (𝜑 → dom 𝐹𝑆)
12 muldmmbl2.5 . . 3 (𝜑 → dom 𝐺𝑆)
1310, 11, 12salincld 46323 . 2 (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆)
149, 13eqeltrd 2829 1 (𝜑 → dom 𝐻𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wnfc 2878  cin 3921  cmpt 5196  dom cdm 5646  cfv 6519  (class class class)co 7394   · cmul 11091  SAlgcsalg 46279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-inf2 9612
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-om 7851  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-salg 46280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator