![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > adddmmbl2 | Structured version Visualization version GIF version |
Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
Ref | Expression |
---|---|
adddmmbl2.1 | ⊢ Ⅎ𝑥𝐹 |
adddmmbl2.2 | ⊢ Ⅎ𝑥𝐺 |
adddmmbl2.3 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
adddmmbl2.4 | ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) |
adddmmbl2.5 | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
adddmmbl2.6 | ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) |
Ref | Expression |
---|---|
adddmmbl2 | ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adddmmbl2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
2 | 1 | nfdm 5965 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐹 |
3 | adddmmbl2.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐺 | |
4 | 3 | nfdm 5965 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐺 |
5 | 2, 4 | nfin 4232 | . . . 4 ⊢ Ⅎ𝑥(dom 𝐹 ∩ dom 𝐺) |
6 | ovex 7464 | . . . 4 ⊢ ((𝐹‘𝑥) + (𝐺‘𝑥)) ∈ V | |
7 | adddmmbl2.6 | . . . 4 ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) | |
8 | 5, 6, 7 | dmmptif 45212 | . . 3 ⊢ dom 𝐻 = (dom 𝐹 ∩ dom 𝐺) |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)) |
10 | adddmmbl2.3 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
11 | adddmmbl2.4 | . . 3 ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) | |
12 | adddmmbl2.5 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | |
13 | 10, 11, 12 | salincld 46308 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆) |
14 | 9, 13 | eqeltrd 2839 | 1 ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Ⅎwnfc 2888 ∩ cin 3962 ↦ cmpt 5231 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 + caddc 11156 SAlgcsalg 46264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-salg 46265 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |