![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > adddmmbl2 | Structured version Visualization version GIF version |
Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
Ref | Expression |
---|---|
adddmmbl2.1 | ⊢ Ⅎ𝑥𝐹 |
adddmmbl2.2 | ⊢ Ⅎ𝑥𝐺 |
adddmmbl2.3 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
adddmmbl2.4 | ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) |
adddmmbl2.5 | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
adddmmbl2.6 | ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) |
Ref | Expression |
---|---|
adddmmbl2 | ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adddmmbl2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
2 | 1 | nfdm 5940 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐹 |
3 | adddmmbl2.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐺 | |
4 | 3 | nfdm 5940 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐺 |
5 | 2, 4 | nfin 4208 | . . . 4 ⊢ Ⅎ𝑥(dom 𝐹 ∩ dom 𝐺) |
6 | ovex 7434 | . . . 4 ⊢ ((𝐹‘𝑥) + (𝐺‘𝑥)) ∈ V | |
7 | adddmmbl2.6 | . . . 4 ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) | |
8 | 5, 6, 7 | dmmptif 44422 | . . 3 ⊢ dom 𝐻 = (dom 𝐹 ∩ dom 𝐺) |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)) |
10 | adddmmbl2.3 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
11 | adddmmbl2.4 | . . 3 ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) | |
12 | adddmmbl2.5 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | |
13 | 10, 11, 12 | salincld 45519 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆) |
14 | 9, 13 | eqeltrd 2825 | 1 ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Ⅎwnfc 2875 ∩ cin 3939 ↦ cmpt 5221 dom cdm 5666 ‘cfv 6533 (class class class)co 7401 + caddc 11108 SAlgcsalg 45475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-salg 45476 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |