| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > adddmmbl2 | Structured version Visualization version GIF version | ||
| Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| adddmmbl2.1 | ⊢ Ⅎ𝑥𝐹 |
| adddmmbl2.2 | ⊢ Ⅎ𝑥𝐺 |
| adddmmbl2.3 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| adddmmbl2.4 | ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) |
| adddmmbl2.5 | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| adddmmbl2.6 | ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) |
| Ref | Expression |
|---|---|
| adddmmbl2 | ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adddmmbl2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 2 | 1 | nfdm 5890 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐹 |
| 3 | adddmmbl2.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐺 | |
| 4 | 3 | nfdm 5890 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐺 |
| 5 | 2, 4 | nfin 4171 | . . . 4 ⊢ Ⅎ𝑥(dom 𝐹 ∩ dom 𝐺) |
| 6 | ovex 7379 | . . . 4 ⊢ ((𝐹‘𝑥) + (𝐺‘𝑥)) ∈ V | |
| 7 | adddmmbl2.6 | . . . 4 ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) | |
| 8 | 5, 6, 7 | dmmptif 45311 | . . 3 ⊢ dom 𝐻 = (dom 𝐹 ∩ dom 𝐺) |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)) |
| 10 | adddmmbl2.3 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 11 | adddmmbl2.4 | . . 3 ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) | |
| 12 | adddmmbl2.5 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | |
| 13 | 10, 11, 12 | salincld 46398 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆) |
| 14 | 9, 13 | eqeltrd 2831 | 1 ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 ∩ cin 3896 ↦ cmpt 5170 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 + caddc 11009 SAlgcsalg 46354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-salg 46355 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |