Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adddmmbl2 Structured version   Visualization version   GIF version

Theorem adddmmbl2 44602
Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
adddmmbl2.1 𝑥𝐹
adddmmbl2.2 𝑥𝐺
adddmmbl2.3 (𝜑𝑆 ∈ SAlg)
adddmmbl2.4 (𝜑 → dom 𝐹𝑆)
adddmmbl2.5 (𝜑 → dom 𝐺𝑆)
adddmmbl2.6 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + (𝐺𝑥)))
Assertion
Ref Expression
adddmmbl2 (𝜑 → dom 𝐻𝑆)

Proof of Theorem adddmmbl2
StepHypRef Expression
1 adddmmbl2.1 . . . . . 6 𝑥𝐹
21nfdm 5872 . . . . 5 𝑥dom 𝐹
3 adddmmbl2.2 . . . . . 6 𝑥𝐺
43nfdm 5872 . . . . 5 𝑥dom 𝐺
52, 4nfin 4156 . . . 4 𝑥(dom 𝐹 ∩ dom 𝐺)
6 ovex 7340 . . . 4 ((𝐹𝑥) + (𝐺𝑥)) ∈ V
7 adddmmbl2.6 . . . 4 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + (𝐺𝑥)))
85, 6, 7dmmptif 43035 . . 3 dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)
98a1i 11 . 2 (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺))
10 adddmmbl2.3 . . 3 (𝜑𝑆 ∈ SAlg)
11 adddmmbl2.4 . . 3 (𝜑 → dom 𝐹𝑆)
12 adddmmbl2.5 . . 3 (𝜑 → dom 𝐺𝑆)
1310, 11, 12salincld 44120 . 2 (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆)
149, 13eqeltrd 2837 1 (𝜑 → dom 𝐻𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wnfc 2885  cin 3891  cmpt 5164  dom cdm 5600  cfv 6458  (class class class)co 7307   + caddc 10924  SAlgcsalg 44078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9447
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-salg 44079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator