Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adddmmbl2 Structured version   Visualization version   GIF version

Theorem adddmmbl2 46830
Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
adddmmbl2.1 𝑥𝐹
adddmmbl2.2 𝑥𝐺
adddmmbl2.3 (𝜑𝑆 ∈ SAlg)
adddmmbl2.4 (𝜑 → dom 𝐹𝑆)
adddmmbl2.5 (𝜑 → dom 𝐺𝑆)
adddmmbl2.6 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + (𝐺𝑥)))
Assertion
Ref Expression
adddmmbl2 (𝜑 → dom 𝐻𝑆)

Proof of Theorem adddmmbl2
StepHypRef Expression
1 adddmmbl2.1 . . . . . 6 𝑥𝐹
21nfdm 5936 . . . . 5 𝑥dom 𝐹
3 adddmmbl2.2 . . . . . 6 𝑥𝐺
43nfdm 5936 . . . . 5 𝑥dom 𝐺
52, 4nfin 4204 . . . 4 𝑥(dom 𝐹 ∩ dom 𝐺)
6 ovex 7443 . . . 4 ((𝐹𝑥) + (𝐺𝑥)) ∈ V
7 adddmmbl2.6 . . . 4 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + (𝐺𝑥)))
85, 6, 7dmmptif 45257 . . 3 dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)
98a1i 11 . 2 (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺))
10 adddmmbl2.3 . . 3 (𝜑𝑆 ∈ SAlg)
11 adddmmbl2.4 . . 3 (𝜑 → dom 𝐹𝑆)
12 adddmmbl2.5 . . 3 (𝜑 → dom 𝐺𝑆)
1310, 11, 12salincld 46348 . 2 (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆)
149, 13eqeltrd 2835 1 (𝜑 → dom 𝐻𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wnfc 2884  cin 3930  cmpt 5206  dom cdm 5659  cfv 6536  (class class class)co 7410   + caddc 11137  SAlgcsalg 46304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-salg 46305
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator