Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adddmmbl2 Structured version   Visualization version   GIF version

Theorem adddmmbl2 46816
Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
adddmmbl2.1 𝑥𝐹
adddmmbl2.2 𝑥𝐺
adddmmbl2.3 (𝜑𝑆 ∈ SAlg)
adddmmbl2.4 (𝜑 → dom 𝐹𝑆)
adddmmbl2.5 (𝜑 → dom 𝐺𝑆)
adddmmbl2.6 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + (𝐺𝑥)))
Assertion
Ref Expression
adddmmbl2 (𝜑 → dom 𝐻𝑆)

Proof of Theorem adddmmbl2
StepHypRef Expression
1 adddmmbl2.1 . . . . . 6 𝑥𝐹
21nfdm 5897 . . . . 5 𝑥dom 𝐹
3 adddmmbl2.2 . . . . . 6 𝑥𝐺
43nfdm 5897 . . . . 5 𝑥dom 𝐺
52, 4nfin 4177 . . . 4 𝑥(dom 𝐹 ∩ dom 𝐺)
6 ovex 7386 . . . 4 ((𝐹𝑥) + (𝐺𝑥)) ∈ V
7 adddmmbl2.6 . . . 4 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + (𝐺𝑥)))
85, 6, 7dmmptif 45244 . . 3 dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)
98a1i 11 . 2 (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺))
10 adddmmbl2.3 . . 3 (𝜑𝑆 ∈ SAlg)
11 adddmmbl2.4 . . 3 (𝜑 → dom 𝐹𝑆)
12 adddmmbl2.5 . . 3 (𝜑 → dom 𝐺𝑆)
1310, 11, 12salincld 46334 . 2 (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆)
149, 13eqeltrd 2828 1 (𝜑 → dom 𝐻𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wnfc 2876  cin 3904  cmpt 5176  dom cdm 5623  cfv 6486  (class class class)co 7353   + caddc 11031  SAlgcsalg 46290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-salg 46291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator