| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > adddmmbl2 | Structured version Visualization version GIF version | ||
| Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| adddmmbl2.1 | ⊢ Ⅎ𝑥𝐹 |
| adddmmbl2.2 | ⊢ Ⅎ𝑥𝐺 |
| adddmmbl2.3 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| adddmmbl2.4 | ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) |
| adddmmbl2.5 | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
| adddmmbl2.6 | ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) |
| Ref | Expression |
|---|---|
| adddmmbl2 | ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adddmmbl2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 2 | 1 | nfdm 5936 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐹 |
| 3 | adddmmbl2.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐺 | |
| 4 | 3 | nfdm 5936 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐺 |
| 5 | 2, 4 | nfin 4204 | . . . 4 ⊢ Ⅎ𝑥(dom 𝐹 ∩ dom 𝐺) |
| 6 | ovex 7443 | . . . 4 ⊢ ((𝐹‘𝑥) + (𝐺‘𝑥)) ∈ V | |
| 7 | adddmmbl2.6 | . . . 4 ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) | |
| 8 | 5, 6, 7 | dmmptif 45257 | . . 3 ⊢ dom 𝐻 = (dom 𝐹 ∩ dom 𝐺) |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)) |
| 10 | adddmmbl2.3 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 11 | adddmmbl2.4 | . . 3 ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) | |
| 12 | adddmmbl2.5 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | |
| 13 | 10, 11, 12 | salincld 46348 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆) |
| 14 | 9, 13 | eqeltrd 2835 | 1 ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2884 ∩ cin 3930 ↦ cmpt 5206 dom cdm 5659 ‘cfv 6536 (class class class)co 7410 + caddc 11137 SAlgcsalg 46304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-salg 46305 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |