Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > adddmmbl2 | Structured version Visualization version GIF version |
Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.) |
Ref | Expression |
---|---|
adddmmbl2.1 | ⊢ Ⅎ𝑥𝐹 |
adddmmbl2.2 | ⊢ Ⅎ𝑥𝐺 |
adddmmbl2.3 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
adddmmbl2.4 | ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) |
adddmmbl2.5 | ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) |
adddmmbl2.6 | ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) |
Ref | Expression |
---|---|
adddmmbl2 | ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adddmmbl2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
2 | 1 | nfdm 5879 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐹 |
3 | adddmmbl2.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐺 | |
4 | 3 | nfdm 5879 | . . . . 5 ⊢ Ⅎ𝑥dom 𝐺 |
5 | 2, 4 | nfin 4160 | . . . 4 ⊢ Ⅎ𝑥(dom 𝐹 ∩ dom 𝐺) |
6 | ovex 7349 | . . . 4 ⊢ ((𝐹‘𝑥) + (𝐺‘𝑥)) ∈ V | |
7 | adddmmbl2.6 | . . . 4 ⊢ 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) | |
8 | 5, 6, 7 | dmmptif 43061 | . . 3 ⊢ dom 𝐻 = (dom 𝐹 ∩ dom 𝐺) |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)) |
10 | adddmmbl2.3 | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
11 | adddmmbl2.4 | . . 3 ⊢ (𝜑 → dom 𝐹 ∈ 𝑆) | |
12 | adddmmbl2.5 | . . 3 ⊢ (𝜑 → dom 𝐺 ∈ 𝑆) | |
13 | 10, 11, 12 | salincld 44146 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆) |
14 | 9, 13 | eqeltrd 2837 | 1 ⊢ (𝜑 → dom 𝐻 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Ⅎwnfc 2884 ∩ cin 3895 ↦ cmpt 5169 dom cdm 5607 ‘cfv 6465 (class class class)co 7316 + caddc 10953 SAlgcsalg 44104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-om 7759 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-salg 44105 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |