Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  adddmmbl2 Structured version   Visualization version   GIF version

Theorem adddmmbl2 46001
Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of [Fremlin1], p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024.)
Hypotheses
Ref Expression
adddmmbl2.1 𝑥𝐹
adddmmbl2.2 𝑥𝐺
adddmmbl2.3 (𝜑𝑆 ∈ SAlg)
adddmmbl2.4 (𝜑 → dom 𝐹𝑆)
adddmmbl2.5 (𝜑 → dom 𝐺𝑆)
adddmmbl2.6 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + (𝐺𝑥)))
Assertion
Ref Expression
adddmmbl2 (𝜑 → dom 𝐻𝑆)

Proof of Theorem adddmmbl2
StepHypRef Expression
1 adddmmbl2.1 . . . . . 6 𝑥𝐹
21nfdm 5940 . . . . 5 𝑥dom 𝐹
3 adddmmbl2.2 . . . . . 6 𝑥𝐺
43nfdm 5940 . . . . 5 𝑥dom 𝐺
52, 4nfin 4208 . . . 4 𝑥(dom 𝐹 ∩ dom 𝐺)
6 ovex 7434 . . . 4 ((𝐹𝑥) + (𝐺𝑥)) ∈ V
7 adddmmbl2.6 . . . 4 𝐻 = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + (𝐺𝑥)))
85, 6, 7dmmptif 44422 . . 3 dom 𝐻 = (dom 𝐹 ∩ dom 𝐺)
98a1i 11 . 2 (𝜑 → dom 𝐻 = (dom 𝐹 ∩ dom 𝐺))
10 adddmmbl2.3 . . 3 (𝜑𝑆 ∈ SAlg)
11 adddmmbl2.4 . . 3 (𝜑 → dom 𝐹𝑆)
12 adddmmbl2.5 . . 3 (𝜑 → dom 𝐺𝑆)
1310, 11, 12salincld 45519 . 2 (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ 𝑆)
149, 13eqeltrd 2825 1 (𝜑 → dom 𝐻𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wnfc 2875  cin 3939  cmpt 5221  dom cdm 5666  cfv 6533  (class class class)co 7401   + caddc 11108  SAlgcsalg 45475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-salg 45476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator