| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meetdm | Structured version Visualization version GIF version | ||
| Description: Domain of meet function for a poset-type structure. (Contributed by NM, 16-Sep-2018.) |
| Ref | Expression |
|---|---|
| meetfval.u | ⊢ 𝐺 = (glb‘𝐾) |
| meetfval.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| meetdm | ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetfval.u | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
| 2 | meetfval.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 3 | 1, 2 | meetfval2 18292 | . . 3 ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}) |
| 4 | 3 | dmeqd 5844 | . 2 ⊢ (𝐾 ∈ 𝑉 → dom ∧ = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}) |
| 5 | dmoprab 7449 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} | |
| 6 | fvex 6835 | . . . . . 6 ⊢ (𝐺‘{𝑥, 𝑦}) ∈ V | |
| 7 | 6 | isseti 3454 | . . . . 5 ⊢ ∃𝑧 𝑧 = (𝐺‘{𝑥, 𝑦}) |
| 8 | 19.42v 1954 | . . . . 5 ⊢ (∃𝑧({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦})) ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ ∃𝑧 𝑧 = (𝐺‘{𝑥, 𝑦}))) | |
| 9 | 7, 8 | mpbiran2 710 | . . . 4 ⊢ (∃𝑧({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦})) ↔ {𝑥, 𝑦} ∈ dom 𝐺) |
| 10 | 9 | opabbii 5156 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} |
| 11 | 5, 10 | eqtri 2754 | . 2 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} |
| 12 | 4, 11 | eqtrdi 2782 | 1 ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cpr 4575 {copab 5151 dom cdm 5614 ‘cfv 6481 {coprab 7347 glbcglb 18216 meetcmee 18218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-oprab 7350 df-glb 18251 df-meet 18253 |
| This theorem is referenced by: meetdef 18294 meetdmss 18297 |
| Copyright terms: Public domain | W3C validator |