MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetdm Structured version   Visualization version   GIF version

Theorem meetdm 18324
Description: Domain of meet function for a poset-type structure. (Contributed by NM, 16-Sep-2018.)
Hypotheses
Ref Expression
meetfval.u 𝐺 = (glb‘𝐾)
meetfval.m = (meet‘𝐾)
Assertion
Ref Expression
meetdm (𝐾𝑉 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺})
Distinct variable group:   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐺(𝑥,𝑦)   (𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem meetdm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 meetfval.u . . . 4 𝐺 = (glb‘𝐾)
2 meetfval.m . . . 4 = (meet‘𝐾)
31, 2meetfval2 18323 . . 3 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))})
43dmeqd 5859 . 2 (𝐾𝑉 → dom = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))})
5 dmoprab 7472 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}
6 fvex 6853 . . . . . 6 (𝐺‘{𝑥, 𝑦}) ∈ V
76isseti 3462 . . . . 5 𝑧 𝑧 = (𝐺‘{𝑥, 𝑦})
8 19.42v 1953 . . . . 5 (∃𝑧({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦})) ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ ∃𝑧 𝑧 = (𝐺‘{𝑥, 𝑦})))
97, 8mpbiran2 710 . . . 4 (∃𝑧({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦})) ↔ {𝑥, 𝑦} ∈ dom 𝐺)
109opabbii 5169 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))} = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺}
115, 10eqtri 2752 . 2 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))} = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺}
124, 11eqtrdi 2780 1 (𝐾𝑉 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cpr 4587  {copab 5164  dom cdm 5631  cfv 6499  {coprab 7370  glbcglb 18247  meetcmee 18249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-oprab 7373  df-glb 18282  df-meet 18284
This theorem is referenced by:  meetdef  18325  meetdmss  18328
  Copyright terms: Public domain W3C validator