| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meetdm | Structured version Visualization version GIF version | ||
| Description: Domain of meet function for a poset-type structure. (Contributed by NM, 16-Sep-2018.) |
| Ref | Expression |
|---|---|
| meetfval.u | ⊢ 𝐺 = (glb‘𝐾) |
| meetfval.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| meetdm | ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetfval.u | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
| 2 | meetfval.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 3 | 1, 2 | meetfval2 18323 | . . 3 ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}) |
| 4 | 3 | dmeqd 5859 | . 2 ⊢ (𝐾 ∈ 𝑉 → dom ∧ = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}) |
| 5 | dmoprab 7472 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} | |
| 6 | fvex 6853 | . . . . . 6 ⊢ (𝐺‘{𝑥, 𝑦}) ∈ V | |
| 7 | 6 | isseti 3462 | . . . . 5 ⊢ ∃𝑧 𝑧 = (𝐺‘{𝑥, 𝑦}) |
| 8 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑧({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦})) ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ ∃𝑧 𝑧 = (𝐺‘{𝑥, 𝑦}))) | |
| 9 | 7, 8 | mpbiran2 710 | . . . 4 ⊢ (∃𝑧({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦})) ↔ {𝑥, 𝑦} ∈ dom 𝐺) |
| 10 | 9 | opabbii 5169 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} |
| 11 | 5, 10 | eqtri 2752 | . 2 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺} |
| 12 | 4, 11 | eqtrdi 2780 | 1 ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cpr 4587 {copab 5164 dom cdm 5631 ‘cfv 6499 {coprab 7370 glbcglb 18247 meetcmee 18249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-oprab 7373 df-glb 18282 df-meet 18284 |
| This theorem is referenced by: meetdef 18325 meetdmss 18328 |
| Copyright terms: Public domain | W3C validator |