MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetdm Structured version   Visualization version   GIF version

Theorem meetdm 18414
Description: Domain of meet function for a poset-type structure. (Contributed by NM, 16-Sep-2018.)
Hypotheses
Ref Expression
meetfval.u 𝐺 = (glb‘𝐾)
meetfval.m = (meet‘𝐾)
Assertion
Ref Expression
meetdm (𝐾𝑉 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺})
Distinct variable group:   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐺(𝑥,𝑦)   (𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem meetdm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 meetfval.u . . . 4 𝐺 = (glb‘𝐾)
2 meetfval.m . . . 4 = (meet‘𝐾)
31, 2meetfval2 18413 . . 3 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))})
43dmeqd 5912 . 2 (𝐾𝑉 → dom = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))})
5 dmoprab 7527 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}
6 fvex 6914 . . . . . 6 (𝐺‘{𝑥, 𝑦}) ∈ V
76isseti 3479 . . . . 5 𝑧 𝑧 = (𝐺‘{𝑥, 𝑦})
8 19.42v 1950 . . . . 5 (∃𝑧({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦})) ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ ∃𝑧 𝑧 = (𝐺‘{𝑥, 𝑦})))
97, 8mpbiran2 708 . . . 4 (∃𝑧({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦})) ↔ {𝑥, 𝑦} ∈ dom 𝐺)
109opabbii 5220 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))} = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺}
115, 10eqtri 2754 . 2 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))} = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺}
124, 11eqtrdi 2782 1 (𝐾𝑉 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝐺})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wex 1774  wcel 2099  {cpr 4635  {copab 5215  dom cdm 5682  cfv 6554  {coprab 7425  glbcglb 18335  meetcmee 18337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-oprab 7428  df-glb 18372  df-meet 18374
This theorem is referenced by:  meetdef  18415  meetdmss  18418
  Copyright terms: Public domain W3C validator