![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joindm | Structured version Visualization version GIF version |
Description: Domain of join function for a poset-type structure. (Contributed by NM, 16-Sep-2018.) |
Ref | Expression |
---|---|
joinfval.u | ⊢ 𝑈 = (lub‘𝐾) |
joinfval.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
joindm | ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinfval.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
2 | joinfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | 1, 2 | joinfval2 18444 | . . 3 ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
4 | 3 | dmeqd 5930 | . 2 ⊢ (𝐾 ∈ 𝑉 → dom ∨ = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
5 | dmoprab 7552 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} | |
6 | fvex 6933 | . . . . . 6 ⊢ (𝑈‘{𝑥, 𝑦}) ∈ V | |
7 | 6 | isseti 3506 | . . . . 5 ⊢ ∃𝑧 𝑧 = (𝑈‘{𝑥, 𝑦}) |
8 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑧({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦})) ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ ∃𝑧 𝑧 = (𝑈‘{𝑥, 𝑦}))) | |
9 | 7, 8 | mpbiran2 709 | . . . 4 ⊢ (∃𝑧({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦})) ↔ {𝑥, 𝑦} ∈ dom 𝑈) |
10 | 9 | opabbii 5233 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈} |
11 | 5, 10 | eqtri 2768 | . 2 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈} |
12 | 4, 11 | eqtrdi 2796 | 1 ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cpr 4650 {copab 5228 dom cdm 5700 ‘cfv 6573 {coprab 7449 lubclub 18379 joincjn 18381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-oprab 7452 df-lub 18416 df-join 18418 |
This theorem is referenced by: joindef 18446 joindmss 18449 |
Copyright terms: Public domain | W3C validator |