MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joindm Structured version   Visualization version   GIF version

Theorem joindm 18338
Description: Domain of join function for a poset-type structure. (Contributed by NM, 16-Sep-2018.)
Hypotheses
Ref Expression
joinfval.u π‘ˆ = (lubβ€˜πΎ)
joinfval.j ∨ = (joinβ€˜πΎ)
Assertion
Ref Expression
joindm (𝐾 ∈ 𝑉 β†’ dom ∨ = {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ})
Distinct variable group:   π‘₯,𝑦,𝐾
Allowed substitution hints:   π‘ˆ(π‘₯,𝑦)   ∨ (π‘₯,𝑦)   𝑉(π‘₯,𝑦)

Proof of Theorem joindm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 joinfval.u . . . 4 π‘ˆ = (lubβ€˜πΎ)
2 joinfval.j . . . 4 ∨ = (joinβ€˜πΎ)
31, 2joinfval2 18337 . . 3 (𝐾 ∈ 𝑉 β†’ ∨ = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom π‘ˆ ∧ 𝑧 = (π‘ˆβ€˜{π‘₯, 𝑦}))})
43dmeqd 5905 . 2 (𝐾 ∈ 𝑉 β†’ dom ∨ = dom {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom π‘ˆ ∧ 𝑧 = (π‘ˆβ€˜{π‘₯, 𝑦}))})
5 dmoprab 7513 . . 3 dom {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom π‘ˆ ∧ 𝑧 = (π‘ˆβ€˜{π‘₯, 𝑦}))} = {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘§({π‘₯, 𝑦} ∈ dom π‘ˆ ∧ 𝑧 = (π‘ˆβ€˜{π‘₯, 𝑦}))}
6 fvex 6904 . . . . . 6 (π‘ˆβ€˜{π‘₯, 𝑦}) ∈ V
76isseti 3489 . . . . 5 βˆƒπ‘§ 𝑧 = (π‘ˆβ€˜{π‘₯, 𝑦})
8 19.42v 1956 . . . . 5 (βˆƒπ‘§({π‘₯, 𝑦} ∈ dom π‘ˆ ∧ 𝑧 = (π‘ˆβ€˜{π‘₯, 𝑦})) ↔ ({π‘₯, 𝑦} ∈ dom π‘ˆ ∧ βˆƒπ‘§ 𝑧 = (π‘ˆβ€˜{π‘₯, 𝑦})))
97, 8mpbiran2 707 . . . 4 (βˆƒπ‘§({π‘₯, 𝑦} ∈ dom π‘ˆ ∧ 𝑧 = (π‘ˆβ€˜{π‘₯, 𝑦})) ↔ {π‘₯, 𝑦} ∈ dom π‘ˆ)
109opabbii 5215 . . 3 {⟨π‘₯, π‘¦βŸ© ∣ βˆƒπ‘§({π‘₯, 𝑦} ∈ dom π‘ˆ ∧ 𝑧 = (π‘ˆβ€˜{π‘₯, 𝑦}))} = {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ}
115, 10eqtri 2759 . 2 dom {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom π‘ˆ ∧ 𝑧 = (π‘ˆβ€˜{π‘₯, 𝑦}))} = {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ}
124, 11eqtrdi 2787 1 (𝐾 ∈ 𝑉 β†’ dom ∨ = {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540  βˆƒwex 1780   ∈ wcel 2105  {cpr 4630  {copab 5210  dom cdm 5676  β€˜cfv 6543  {coprab 7413  lubclub 18272  joincjn 18274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-oprab 7416  df-lub 18309  df-join 18311
This theorem is referenced by:  joindef  18339  joindmss  18342
  Copyright terms: Public domain W3C validator