| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joindm | Structured version Visualization version GIF version | ||
| Description: Domain of join function for a poset-type structure. (Contributed by NM, 16-Sep-2018.) |
| Ref | Expression |
|---|---|
| joinfval.u | ⊢ 𝑈 = (lub‘𝐾) |
| joinfval.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| joindm | ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinfval.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
| 2 | joinfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | 1, 2 | joinfval2 18384 | . . 3 ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
| 4 | 3 | dmeqd 5885 | . 2 ⊢ (𝐾 ∈ 𝑉 → dom ∨ = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
| 5 | dmoprab 7510 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} | |
| 6 | fvex 6889 | . . . . . 6 ⊢ (𝑈‘{𝑥, 𝑦}) ∈ V | |
| 7 | 6 | isseti 3477 | . . . . 5 ⊢ ∃𝑧 𝑧 = (𝑈‘{𝑥, 𝑦}) |
| 8 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑧({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦})) ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ ∃𝑧 𝑧 = (𝑈‘{𝑥, 𝑦}))) | |
| 9 | 7, 8 | mpbiran2 710 | . . . 4 ⊢ (∃𝑧({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦})) ↔ {𝑥, 𝑦} ∈ dom 𝑈) |
| 10 | 9 | opabbii 5186 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈} |
| 11 | 5, 10 | eqtri 2758 | . 2 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈} |
| 12 | 4, 11 | eqtrdi 2786 | 1 ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cpr 4603 {copab 5181 dom cdm 5654 ‘cfv 6531 {coprab 7406 lubclub 18321 joincjn 18323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-oprab 7409 df-lub 18356 df-join 18358 |
| This theorem is referenced by: joindef 18386 joindmss 18389 |
| Copyright terms: Public domain | W3C validator |