![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joindm | Structured version Visualization version GIF version |
Description: Domain of join function for a poset-type structure. (Contributed by NM, 16-Sep-2018.) |
Ref | Expression |
---|---|
joinfval.u | β’ π = (lubβπΎ) |
joinfval.j | β’ β¨ = (joinβπΎ) |
Ref | Expression |
---|---|
joindm | β’ (πΎ β π β dom β¨ = {β¨π₯, π¦β© β£ {π₯, π¦} β dom π}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinfval.u | . . . 4 β’ π = (lubβπΎ) | |
2 | joinfval.j | . . . 4 β’ β¨ = (joinβπΎ) | |
3 | 1, 2 | joinfval2 18337 | . . 3 β’ (πΎ β π β β¨ = {β¨β¨π₯, π¦β©, π§β© β£ ({π₯, π¦} β dom π β§ π§ = (πβ{π₯, π¦}))}) |
4 | 3 | dmeqd 5905 | . 2 β’ (πΎ β π β dom β¨ = dom {β¨β¨π₯, π¦β©, π§β© β£ ({π₯, π¦} β dom π β§ π§ = (πβ{π₯, π¦}))}) |
5 | dmoprab 7513 | . . 3 β’ dom {β¨β¨π₯, π¦β©, π§β© β£ ({π₯, π¦} β dom π β§ π§ = (πβ{π₯, π¦}))} = {β¨π₯, π¦β© β£ βπ§({π₯, π¦} β dom π β§ π§ = (πβ{π₯, π¦}))} | |
6 | fvex 6904 | . . . . . 6 β’ (πβ{π₯, π¦}) β V | |
7 | 6 | isseti 3489 | . . . . 5 β’ βπ§ π§ = (πβ{π₯, π¦}) |
8 | 19.42v 1956 | . . . . 5 β’ (βπ§({π₯, π¦} β dom π β§ π§ = (πβ{π₯, π¦})) β ({π₯, π¦} β dom π β§ βπ§ π§ = (πβ{π₯, π¦}))) | |
9 | 7, 8 | mpbiran2 707 | . . . 4 β’ (βπ§({π₯, π¦} β dom π β§ π§ = (πβ{π₯, π¦})) β {π₯, π¦} β dom π) |
10 | 9 | opabbii 5215 | . . 3 β’ {β¨π₯, π¦β© β£ βπ§({π₯, π¦} β dom π β§ π§ = (πβ{π₯, π¦}))} = {β¨π₯, π¦β© β£ {π₯, π¦} β dom π} |
11 | 5, 10 | eqtri 2759 | . 2 β’ dom {β¨β¨π₯, π¦β©, π§β© β£ ({π₯, π¦} β dom π β§ π§ = (πβ{π₯, π¦}))} = {β¨π₯, π¦β© β£ {π₯, π¦} β dom π} |
12 | 4, 11 | eqtrdi 2787 | 1 β’ (πΎ β π β dom β¨ = {β¨π₯, π¦β© β£ {π₯, π¦} β dom π}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 βwex 1780 β wcel 2105 {cpr 4630 {copab 5210 dom cdm 5676 βcfv 6543 {coprab 7413 lubclub 18272 joincjn 18274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-oprab 7416 df-lub 18309 df-join 18311 |
This theorem is referenced by: joindef 18339 joindmss 18342 |
Copyright terms: Public domain | W3C validator |