| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joindm | Structured version Visualization version GIF version | ||
| Description: Domain of join function for a poset-type structure. (Contributed by NM, 16-Sep-2018.) |
| Ref | Expression |
|---|---|
| joinfval.u | ⊢ 𝑈 = (lub‘𝐾) |
| joinfval.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| joindm | ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinfval.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
| 2 | joinfval.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | 1, 2 | joinfval2 18333 | . . 3 ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
| 4 | 3 | dmeqd 5869 | . 2 ⊢ (𝐾 ∈ 𝑉 → dom ∨ = dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
| 5 | dmoprab 7492 | . . 3 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} | |
| 6 | fvex 6871 | . . . . . 6 ⊢ (𝑈‘{𝑥, 𝑦}) ∈ V | |
| 7 | 6 | isseti 3465 | . . . . 5 ⊢ ∃𝑧 𝑧 = (𝑈‘{𝑥, 𝑦}) |
| 8 | 19.42v 1953 | . . . . 5 ⊢ (∃𝑧({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦})) ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ ∃𝑧 𝑧 = (𝑈‘{𝑥, 𝑦}))) | |
| 9 | 7, 8 | mpbiran2 710 | . . . 4 ⊢ (∃𝑧({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦})) ↔ {𝑥, 𝑦} ∈ dom 𝑈) |
| 10 | 9 | opabbii 5174 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈} |
| 11 | 5, 10 | eqtri 2752 | . 2 ⊢ dom {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈} |
| 12 | 4, 11 | eqtrdi 2780 | 1 ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cpr 4591 {copab 5169 dom cdm 5638 ‘cfv 6511 {coprab 7388 lubclub 18270 joincjn 18272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-oprab 7391 df-lub 18305 df-join 18307 |
| This theorem is referenced by: joindef 18335 joindmss 18338 |
| Copyright terms: Public domain | W3C validator |