MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddomprc Structured version   Visualization version   GIF version

Theorem dprddomprc 19113
Description: A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.)
Assertion
Ref Expression
dprddomprc (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)

Proof of Theorem dprddomprc
StepHypRef Expression
1 df-nel 3116 . . 3 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
2 dmexg 7599 . . . 4 (𝑆 ∈ V → dom 𝑆 ∈ V)
32con3i 157 . . 3 (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V)
41, 3sylbi 220 . 2 (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V)
5 reldmdprd 19110 . . 3 Rel dom DProd
65brrelex2i 5586 . 2 (𝐺dom DProd 𝑆𝑆 ∈ V)
74, 6nsyl 142 1 (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2114  wnel 3115  Vcvv 3469   class class class wbr 5042  dom cdm 5532   DProd cdprd 19106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-nel 3116  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-xp 5538  df-rel 5539  df-cnv 5540  df-dm 5542  df-rn 5543  df-oprab 7144  df-mpo 7145  df-dprd 19108
This theorem is referenced by:  dprddomcld  19114  dprdsubg  19137
  Copyright terms: Public domain W3C validator