Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprddomprc | Structured version Visualization version GIF version |
Description: A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.) |
Ref | Expression |
---|---|
dprddomprc | ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3047 | . . 3 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
2 | dmexg 7796 | . . . 4 ⊢ (𝑆 ∈ V → dom 𝑆 ∈ V) | |
3 | 2 | con3i 154 | . . 3 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V) |
4 | 1, 3 | sylbi 216 | . 2 ⊢ (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V) |
5 | reldmdprd 19672 | . . 3 ⊢ Rel dom DProd | |
6 | 5 | brrelex2i 5662 | . 2 ⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
7 | 4, 6 | nsyl 140 | 1 ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 ∉ wnel 3046 Vcvv 3440 class class class wbr 5086 dom cdm 5607 DProd cdprd 19668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-xp 5613 df-rel 5614 df-cnv 5615 df-dm 5617 df-rn 5618 df-oprab 7320 df-mpo 7321 df-dprd 19670 |
This theorem is referenced by: dprddomcld 19676 dprdsubg 19699 |
Copyright terms: Public domain | W3C validator |