MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddomprc Structured version   Visualization version   GIF version

Theorem dprddomprc 19912
Description: A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.)
Assertion
Ref Expression
dprddomprc (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)

Proof of Theorem dprddomprc
StepHypRef Expression
1 df-nel 3039 . . 3 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
2 dmexg 7887 . . . 4 (𝑆 ∈ V → dom 𝑆 ∈ V)
32con3i 154 . . 3 (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V)
41, 3sylbi 216 . 2 (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V)
5 reldmdprd 19909 . . 3 Rel dom DProd
65brrelex2i 5723 . 2 (𝐺dom DProd 𝑆𝑆 ∈ V)
74, 6nsyl 140 1 (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2098  wnel 3038  Vcvv 3466   class class class wbr 5138  dom cdm 5666   DProd cdprd 19905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-xp 5672  df-rel 5673  df-cnv 5674  df-dm 5676  df-rn 5677  df-oprab 7405  df-mpo 7406  df-dprd 19907
This theorem is referenced by:  dprddomcld  19913  dprdsubg  19936
  Copyright terms: Public domain W3C validator