![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprddomprc | Structured version Visualization version GIF version |
Description: A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.) |
Ref | Expression |
---|---|
dprddomprc | ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3039 | . . 3 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
2 | dmexg 7887 | . . . 4 ⊢ (𝑆 ∈ V → dom 𝑆 ∈ V) | |
3 | 2 | con3i 154 | . . 3 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V) |
4 | 1, 3 | sylbi 216 | . 2 ⊢ (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V) |
5 | reldmdprd 19909 | . . 3 ⊢ Rel dom DProd | |
6 | 5 | brrelex2i 5723 | . 2 ⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
7 | 4, 6 | nsyl 140 | 1 ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 ∉ wnel 3038 Vcvv 3466 class class class wbr 5138 dom cdm 5666 DProd cdprd 19905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 df-dm 5676 df-rn 5677 df-oprab 7405 df-mpo 7406 df-dprd 19907 |
This theorem is referenced by: dprddomcld 19913 dprdsubg 19936 |
Copyright terms: Public domain | W3C validator |