| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprddomprc | Structured version Visualization version GIF version | ||
| Description: A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprddomprc | ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3031 | . . 3 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
| 2 | dmexg 7880 | . . . 4 ⊢ (𝑆 ∈ V → dom 𝑆 ∈ V) | |
| 3 | 2 | con3i 154 | . . 3 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V) |
| 5 | reldmdprd 19936 | . . 3 ⊢ Rel dom DProd | |
| 6 | 5 | brrelex2i 5698 | . 2 ⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
| 7 | 4, 6 | nsyl 140 | 1 ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∉ wnel 3030 Vcvv 3450 class class class wbr 5110 dom cdm 5641 DProd cdprd 19932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-oprab 7394 df-mpo 7395 df-dprd 19934 |
| This theorem is referenced by: dprddomcld 19940 dprdsubg 19963 |
| Copyright terms: Public domain | W3C validator |