MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddomprc Structured version   Visualization version   GIF version

Theorem dprddomprc 19932
Description: A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.)
Assertion
Ref Expression
dprddomprc (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)

Proof of Theorem dprddomprc
StepHypRef Expression
1 df-nel 3030 . . 3 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
2 dmexg 7877 . . . 4 (𝑆 ∈ V → dom 𝑆 ∈ V)
32con3i 154 . . 3 (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V)
41, 3sylbi 217 . 2 (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V)
5 reldmdprd 19929 . . 3 Rel dom DProd
65brrelex2i 5695 . 2 (𝐺dom DProd 𝑆𝑆 ∈ V)
74, 6nsyl 140 1 (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wnel 3029  Vcvv 3447   class class class wbr 5107  dom cdm 5638   DProd cdprd 19925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-oprab 7391  df-mpo 7392  df-dprd 19927
This theorem is referenced by:  dprddomcld  19933  dprdsubg  19956
  Copyright terms: Public domain W3C validator