| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprddomprc | Structured version Visualization version GIF version | ||
| Description: A family of subgroups indexed by a proper class cannot be a family of subgroups for an internal direct product. (Contributed by AV, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprddomprc | ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3037 | . . 3 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
| 2 | dmexg 7897 | . . . 4 ⊢ (𝑆 ∈ V → dom 𝑆 ∈ V) | |
| 3 | 2 | con3i 154 | . . 3 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝑆 ∈ V) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (dom 𝑆 ∉ V → ¬ 𝑆 ∈ V) |
| 5 | reldmdprd 19980 | . . 3 ⊢ Rel dom DProd | |
| 6 | 5 | brrelex2i 5711 | . 2 ⊢ (𝐺dom DProd 𝑆 → 𝑆 ∈ V) |
| 7 | 4, 6 | nsyl 140 | 1 ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∉ wnel 3036 Vcvv 3459 class class class wbr 5119 dom cdm 5654 DProd cdprd 19976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-oprab 7409 df-mpo 7410 df-dprd 19978 |
| This theorem is referenced by: dprddomcld 19984 dprdsubg 20007 |
| Copyright terms: Public domain | W3C validator |