MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdd Structured version   Visualization version   GIF version

Theorem dmdprdd 19938
Description: Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z 𝑍 = (Cntz‘𝐺)
dmdprd.0 0 = (0g𝐺)
dmdprd.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
dmdprdd.1 (𝜑𝐺 ∈ Grp)
dmdprdd.2 (𝜑𝐼𝑉)
dmdprdd.3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dmdprdd.4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
dmdprdd.5 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
Assertion
Ref Expression
dmdprdd (𝜑𝐺dom DProd 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem dmdprdd
StepHypRef Expression
1 dmdprdd.1 . 2 (𝜑𝐺 ∈ Grp)
2 dmdprdd.3 . 2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
3 eldifsn 4753 . . . . . . 7 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑦𝑥))
4 necom 2979 . . . . . . . 8 (𝑦𝑥𝑥𝑦)
54anbi2i 623 . . . . . . 7 ((𝑦𝐼𝑦𝑥) ↔ (𝑦𝐼𝑥𝑦))
63, 5bitri 275 . . . . . 6 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑥𝑦))
7 dmdprdd.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
873exp2 1355 . . . . . . 7 (𝜑 → (𝑥𝐼 → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
98imp4b 421 . . . . . 6 ((𝜑𝑥𝐼) → ((𝑦𝐼𝑥𝑦) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
106, 9biimtrid 242 . . . . 5 ((𝜑𝑥𝐼) → (𝑦 ∈ (𝐼 ∖ {𝑥}) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
1110ralrimiv 3125 . . . 4 ((𝜑𝑥𝐼) → ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
12 dmdprdd.5 . . . . 5 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
132ffvelcdmda 7059 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
14 dmdprd.0 . . . . . . . . 9 0 = (0g𝐺)
1514subg0cl 19073 . . . . . . . 8 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑥))
1613, 15syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 0 ∈ (𝑆𝑥))
171adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
18 eqid 2730 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
1918subgacs 19100 . . . . . . . . . 10 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
20 acsmre 17620 . . . . . . . . . 10 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2117, 19, 203syl 18 . . . . . . . . 9 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
22 imassrn 6045 . . . . . . . . . . . 12 (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆
232frnd 6699 . . . . . . . . . . . . 13 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
2423adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → ran 𝑆 ⊆ (SubGrp‘𝐺))
2522, 24sstrid 3961 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (SubGrp‘𝐺))
26 mresspw 17560 . . . . . . . . . . . 12 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2721, 26syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2825, 27sstrd 3960 . . . . . . . . . 10 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
29 sspwuni 5067 . . . . . . . . . 10 ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
3028, 29sylib 218 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
31 dmdprd.k . . . . . . . . . 10 𝐾 = (mrCls‘(SubGrp‘𝐺))
3231mrccl 17579 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
3321, 30, 32syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
3414subg0cl 19073 . . . . . . . 8 ((𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
3533, 34syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 0 ∈ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
3616, 35elind 4166 . . . . . 6 ((𝜑𝑥𝐼) → 0 ∈ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
3736snssd 4776 . . . . 5 ((𝜑𝑥𝐼) → { 0 } ⊆ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
3812, 37eqssd 3967 . . . 4 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
3911, 38jca 511 . . 3 ((𝜑𝑥𝐼) → (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
4039ralrimiva 3126 . 2 (𝜑 → ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
41 dmdprdd.2 . . 3 (𝜑𝐼𝑉)
422fdmd 6701 . . 3 (𝜑 → dom 𝑆 = 𝐼)
43 dmdprd.z . . . 4 𝑍 = (Cntz‘𝐺)
4443, 14, 31dmdprd 19937 . . 3 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
4541, 42, 44syl2anc 584 . 2 (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
461, 2, 40, 45mpbir3and 1343 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  cdif 3914  cin 3916  wss 3917  𝒫 cpw 4566  {csn 4592   cuni 4874   class class class wbr 5110  dom cdm 5641  ran crn 5642  cima 5644  wf 6510  cfv 6514  Basecbs 17186  0gc0g 17409  Moorecmre 17550  mrClscmrc 17551  ACScacs 17553  Grpcgrp 18872  SubGrpcsubg 19059  Cntzccntz 19254   DProd cdprd 19932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-subg 19062  df-dprd 19934
This theorem is referenced by:  dprdss  19968  dprdz  19969  dprdf1o  19971  dprdsn  19975  dprd2da  19981  dmdprdsplit2  19985  ablfac1b  20009
  Copyright terms: Public domain W3C validator