Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdd Structured version   Visualization version   GIF version

Theorem dmdprdd 19118
 Description: Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z 𝑍 = (Cntz‘𝐺)
dmdprd.0 0 = (0g𝐺)
dmdprd.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
dmdprdd.1 (𝜑𝐺 ∈ Grp)
dmdprdd.2 (𝜑𝐼𝑉)
dmdprdd.3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dmdprdd.4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
dmdprdd.5 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
Assertion
Ref Expression
dmdprdd (𝜑𝐺dom DProd 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem dmdprdd
StepHypRef Expression
1 dmdprdd.1 . 2 (𝜑𝐺 ∈ Grp)
2 dmdprdd.3 . 2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
3 eldifsn 4680 . . . . . . 7 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑦𝑥))
4 necom 3040 . . . . . . . 8 (𝑦𝑥𝑥𝑦)
54anbi2i 625 . . . . . . 7 ((𝑦𝐼𝑦𝑥) ↔ (𝑦𝐼𝑥𝑦))
63, 5bitri 278 . . . . . 6 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑥𝑦))
7 dmdprdd.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
873exp2 1351 . . . . . . 7 (𝜑 → (𝑥𝐼 → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
98imp4b 425 . . . . . 6 ((𝜑𝑥𝐼) → ((𝑦𝐼𝑥𝑦) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
106, 9syl5bi 245 . . . . 5 ((𝜑𝑥𝐼) → (𝑦 ∈ (𝐼 ∖ {𝑥}) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
1110ralrimiv 3148 . . . 4 ((𝜑𝑥𝐼) → ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
12 dmdprdd.5 . . . . 5 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
132ffvelrnda 6829 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
14 dmdprd.0 . . . . . . . . 9 0 = (0g𝐺)
1514subg0cl 18283 . . . . . . . 8 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑥))
1613, 15syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 0 ∈ (𝑆𝑥))
171adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
18 eqid 2798 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
1918subgacs 18309 . . . . . . . . . 10 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
20 acsmre 16918 . . . . . . . . . 10 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2117, 19, 203syl 18 . . . . . . . . 9 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
22 imassrn 5908 . . . . . . . . . . . 12 (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆
232frnd 6495 . . . . . . . . . . . . 13 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
2423adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → ran 𝑆 ⊆ (SubGrp‘𝐺))
2522, 24sstrid 3926 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (SubGrp‘𝐺))
26 mresspw 16858 . . . . . . . . . . . 12 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2721, 26syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2825, 27sstrd 3925 . . . . . . . . . 10 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
29 sspwuni 4986 . . . . . . . . . 10 ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
3028, 29sylib 221 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
31 dmdprd.k . . . . . . . . . 10 𝐾 = (mrCls‘(SubGrp‘𝐺))
3231mrccl 16877 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
3321, 30, 32syl2anc 587 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
3414subg0cl 18283 . . . . . . . 8 ((𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
3533, 34syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 0 ∈ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
3616, 35elind 4121 . . . . . 6 ((𝜑𝑥𝐼) → 0 ∈ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
3736snssd 4702 . . . . 5 ((𝜑𝑥𝐼) → { 0 } ⊆ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
3812, 37eqssd 3932 . . . 4 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
3911, 38jca 515 . . 3 ((𝜑𝑥𝐼) → (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
4039ralrimiva 3149 . 2 (𝜑 → ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
41 dmdprdd.2 . . 3 (𝜑𝐼𝑉)
422fdmd 6498 . . 3 (𝜑 → dom 𝑆 = 𝐼)
43 dmdprd.z . . . 4 𝑍 = (Cntz‘𝐺)
4443, 14, 31dmdprd 19117 . . 3 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
4541, 42, 44syl2anc 587 . 2 (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
461, 2, 40, 45mpbir3and 1339 1 (𝜑𝐺dom DProd 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106   ∖ cdif 3878   ∩ cin 3880   ⊆ wss 3881  𝒫 cpw 4497  {csn 4525  ∪ cuni 4801   class class class wbr 5031  dom cdm 5520  ran crn 5521   “ cima 5523  ⟶wf 6321  ‘cfv 6325  Basecbs 16478  0gc0g 16708  Moorecmre 16848  mrClscmrc 16849  ACScacs 16851  Grpcgrp 18098  SubGrpcsubg 18269  Cntzccntz 18441   DProd cdprd 19112 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18101  df-minusg 18102  df-subg 18272  df-dprd 19114 This theorem is referenced by:  dprdss  19148  dprdz  19149  dprdf1o  19151  dprdsn  19155  dprd2da  19161  dmdprdsplit2  19165  ablfac1b  19189
 Copyright terms: Public domain W3C validator