MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdd Structured version   Visualization version   GIF version

Theorem dmdprdd 19115
Description: Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z 𝑍 = (Cntz‘𝐺)
dmdprd.0 0 = (0g𝐺)
dmdprd.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
dmdprdd.1 (𝜑𝐺 ∈ Grp)
dmdprdd.2 (𝜑𝐼𝑉)
dmdprdd.3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dmdprdd.4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
dmdprdd.5 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
Assertion
Ref Expression
dmdprdd (𝜑𝐺dom DProd 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem dmdprdd
StepHypRef Expression
1 dmdprdd.1 . 2 (𝜑𝐺 ∈ Grp)
2 dmdprdd.3 . 2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
3 eldifsn 4712 . . . . . . 7 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑦𝑥))
4 necom 3069 . . . . . . . 8 (𝑦𝑥𝑥𝑦)
54anbi2i 624 . . . . . . 7 ((𝑦𝐼𝑦𝑥) ↔ (𝑦𝐼𝑥𝑦))
63, 5bitri 277 . . . . . 6 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑥𝑦))
7 dmdprdd.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
873exp2 1350 . . . . . . 7 (𝜑 → (𝑥𝐼 → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
98imp4b 424 . . . . . 6 ((𝜑𝑥𝐼) → ((𝑦𝐼𝑥𝑦) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
106, 9syl5bi 244 . . . . 5 ((𝜑𝑥𝐼) → (𝑦 ∈ (𝐼 ∖ {𝑥}) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
1110ralrimiv 3181 . . . 4 ((𝜑𝑥𝐼) → ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
12 dmdprdd.5 . . . . 5 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
132ffvelrnda 6845 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
14 dmdprd.0 . . . . . . . . 9 0 = (0g𝐺)
1514subg0cl 18281 . . . . . . . 8 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑥))
1613, 15syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 0 ∈ (𝑆𝑥))
171adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
18 eqid 2821 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
1918subgacs 18307 . . . . . . . . . 10 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
20 acsmre 16917 . . . . . . . . . 10 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2117, 19, 203syl 18 . . . . . . . . 9 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
22 imassrn 5934 . . . . . . . . . . . 12 (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆
232frnd 6515 . . . . . . . . . . . . 13 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
2423adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → ran 𝑆 ⊆ (SubGrp‘𝐺))
2522, 24sstrid 3977 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (SubGrp‘𝐺))
26 mresspw 16857 . . . . . . . . . . . 12 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2721, 26syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2825, 27sstrd 3976 . . . . . . . . . 10 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
29 sspwuni 5014 . . . . . . . . . 10 ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
3028, 29sylib 220 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
31 dmdprd.k . . . . . . . . . 10 𝐾 = (mrCls‘(SubGrp‘𝐺))
3231mrccl 16876 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
3321, 30, 32syl2anc 586 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
3414subg0cl 18281 . . . . . . . 8 ((𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
3533, 34syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 0 ∈ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
3616, 35elind 4170 . . . . . 6 ((𝜑𝑥𝐼) → 0 ∈ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
3736snssd 4735 . . . . 5 ((𝜑𝑥𝐼) → { 0 } ⊆ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
3812, 37eqssd 3983 . . . 4 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
3911, 38jca 514 . . 3 ((𝜑𝑥𝐼) → (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
4039ralrimiva 3182 . 2 (𝜑 → ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
41 dmdprdd.2 . . 3 (𝜑𝐼𝑉)
422fdmd 6517 . . 3 (𝜑 → dom 𝑆 = 𝐼)
43 dmdprd.z . . . 4 𝑍 = (Cntz‘𝐺)
4443, 14, 31dmdprd 19114 . . 3 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
4541, 42, 44syl2anc 586 . 2 (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
461, 2, 40, 45mpbir3and 1338 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  cdif 3932  cin 3934  wss 3935  𝒫 cpw 4538  {csn 4560   cuni 4831   class class class wbr 5058  dom cdm 5549  ran crn 5550  cima 5552  wf 6345  cfv 6349  Basecbs 16477  0gc0g 16707  Moorecmre 16847  mrClscmrc 16848  ACScacs 16850  Grpcgrp 18097  SubGrpcsubg 18267  Cntzccntz 18439   DProd cdprd 19109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-subg 18270  df-dprd 19111
This theorem is referenced by:  dprdss  19145  dprdz  19146  dprdf1o  19148  dprdsn  19152  dprd2da  19158  dmdprdsplit2  19162  ablfac1b  19186
  Copyright terms: Public domain W3C validator