Proof of Theorem dmdprdd
| Step | Hyp | Ref
| Expression |
| 1 | | dmdprdd.1 |
. 2
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 2 | | dmdprdd.3 |
. 2
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 3 | | eldifsn 4762 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦 ∈ 𝐼 ∧ 𝑦 ≠ 𝑥)) |
| 4 | | necom 2985 |
. . . . . . . 8
⊢ (𝑦 ≠ 𝑥 ↔ 𝑥 ≠ 𝑦) |
| 5 | 4 | anbi2i 623 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐼 ∧ 𝑦 ≠ 𝑥) ↔ (𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) |
| 6 | 3, 5 | bitri 275 |
. . . . . 6
⊢ (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) |
| 7 | | dmdprdd.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦)) → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) |
| 8 | 7 | 3exp2 1355 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐼 → (𝑦 ∈ 𝐼 → (𝑥 ≠ 𝑦 → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))))) |
| 9 | 8 | imp4b 421 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ∧ 𝑥 ≠ 𝑦) → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) |
| 10 | 6, 9 | biimtrid 242 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ (𝐼 ∖ {𝑥}) → (𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)))) |
| 11 | 10 | ralrimiv 3131 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦))) |
| 12 | | dmdprdd.5 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 }) |
| 13 | 2 | ffvelcdmda 7074 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ∈ (SubGrp‘𝐺)) |
| 14 | | dmdprd.0 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐺) |
| 15 | 14 | subg0cl 19117 |
. . . . . . . 8
⊢ ((𝑆‘𝑥) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆‘𝑥)) |
| 16 | 13, 15 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 0 ∈ (𝑆‘𝑥)) |
| 17 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺 ∈ Grp) |
| 18 | | eqid 2735 |
. . . . . . . . . . 11
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 19 | 18 | subgacs 19144 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘(Base‘𝐺))) |
| 20 | | acsmre 17664 |
. . . . . . . . . 10
⊢
((SubGrp‘𝐺)
∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 21 | 17, 19, 20 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 22 | | imassrn 6058 |
. . . . . . . . . . . 12
⊢ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆 |
| 23 | 2 | frnd 6714 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺)) |
| 24 | 23 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ran 𝑆 ⊆ (SubGrp‘𝐺)) |
| 25 | 22, 24 | sstrid 3970 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (SubGrp‘𝐺)) |
| 26 | | mresspw 17604 |
. . . . . . . . . . . 12
⊢
((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) |
| 27 | 21, 26 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) |
| 28 | 25, 27 | sstrd 3969 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺)) |
| 29 | | sspwuni 5076 |
. . . . . . . . . 10
⊢ ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ ∪ (𝑆
“ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) |
| 30 | 28, 29 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ∪ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) |
| 31 | | dmdprd.k |
. . . . . . . . . 10
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
| 32 | 31 | mrccl 17623 |
. . . . . . . . 9
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) → (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) |
| 33 | 21, 30, 32 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺)) |
| 34 | 14 | subg0cl 19117 |
. . . . . . . 8
⊢ ((𝐾‘∪ (𝑆
“ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) |
| 35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 0 ∈ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) |
| 36 | 16, 35 | elind 4175 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 0 ∈ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))))) |
| 37 | 36 | snssd 4785 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → { 0 } ⊆ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥}))))) |
| 38 | 12, 37 | eqssd 3976 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }) |
| 39 | 11, 38 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) |
| 40 | 39 | ralrimiva 3132 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })) |
| 41 | | dmdprdd.2 |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 42 | 2 | fdmd 6716 |
. . 3
⊢ (𝜑 → dom 𝑆 = 𝐼) |
| 43 | | dmdprd.z |
. . . 4
⊢ 𝑍 = (Cntz‘𝐺) |
| 44 | 43, 14, 31 | dmdprd 19981 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
| 45 | 41, 42, 44 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆‘𝑥) ⊆ (𝑍‘(𝑆‘𝑦)) ∧ ((𝑆‘𝑥) ∩ (𝐾‘∪ (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })))) |
| 46 | 1, 2, 40, 45 | mpbir3and 1343 |
1
⊢ (𝜑 → 𝐺dom DProd 𝑆) |