MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdd Structured version   Visualization version   GIF version

Theorem dmdprdd 19386
Description: Show that a given family is a direct product decomposition. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 11-Jul-2019.)
Hypotheses
Ref Expression
dmdprd.z 𝑍 = (Cntz‘𝐺)
dmdprd.0 0 = (0g𝐺)
dmdprd.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
dmdprdd.1 (𝜑𝐺 ∈ Grp)
dmdprdd.2 (𝜑𝐼𝑉)
dmdprdd.3 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dmdprdd.4 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
dmdprdd.5 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
Assertion
Ref Expression
dmdprdd (𝜑𝐺dom DProd 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   0 (𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem dmdprdd
StepHypRef Expression
1 dmdprdd.1 . 2 (𝜑𝐺 ∈ Grp)
2 dmdprdd.3 . 2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
3 eldifsn 4700 . . . . . . 7 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑦𝑥))
4 necom 2994 . . . . . . . 8 (𝑦𝑥𝑥𝑦)
54anbi2i 626 . . . . . . 7 ((𝑦𝐼𝑦𝑥) ↔ (𝑦𝐼𝑥𝑦))
63, 5bitri 278 . . . . . 6 (𝑦 ∈ (𝐼 ∖ {𝑥}) ↔ (𝑦𝐼𝑥𝑦))
7 dmdprdd.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑦𝐼𝑥𝑦)) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
873exp2 1356 . . . . . . 7 (𝜑 → (𝑥𝐼 → (𝑦𝐼 → (𝑥𝑦 → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))))
98imp4b 425 . . . . . 6 ((𝜑𝑥𝐼) → ((𝑦𝐼𝑥𝑦) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
106, 9syl5bi 245 . . . . 5 ((𝜑𝑥𝐼) → (𝑦 ∈ (𝐼 ∖ {𝑥}) → (𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦))))
1110ralrimiv 3104 . . . 4 ((𝜑𝑥𝐼) → ∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)))
12 dmdprdd.5 . . . . 5 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) ⊆ { 0 })
132ffvelrnda 6904 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
14 dmdprd.0 . . . . . . . . 9 0 = (0g𝐺)
1514subg0cl 18551 . . . . . . . 8 ((𝑆𝑥) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆𝑥))
1613, 15syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 0 ∈ (𝑆𝑥))
171adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝐼) → 𝐺 ∈ Grp)
18 eqid 2737 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
1918subgacs 18577 . . . . . . . . . 10 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
20 acsmre 17155 . . . . . . . . . 10 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2117, 19, 203syl 18 . . . . . . . . 9 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
22 imassrn 5940 . . . . . . . . . . . 12 (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝑆
232frnd 6553 . . . . . . . . . . . . 13 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
2423adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → ran 𝑆 ⊆ (SubGrp‘𝐺))
2522, 24sstrid 3912 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (SubGrp‘𝐺))
26 mresspw 17095 . . . . . . . . . . . 12 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2721, 26syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2825, 27sstrd 3911 . . . . . . . . . 10 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺))
29 sspwuni 5008 . . . . . . . . . 10 ((𝑆 “ (𝐼 ∖ {𝑥})) ⊆ 𝒫 (Base‘𝐺) ↔ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
3028, 29sylib 221 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺))
31 dmdprd.k . . . . . . . . . 10 𝐾 = (mrCls‘(SubGrp‘𝐺))
3231mrccl 17114 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ (𝑆 “ (𝐼 ∖ {𝑥})) ⊆ (Base‘𝐺)) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
3321, 30, 32syl2anc 587 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺))
3414subg0cl 18551 . . . . . . . 8 ((𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
3533, 34syl 17 . . . . . . 7 ((𝜑𝑥𝐼) → 0 ∈ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥}))))
3616, 35elind 4108 . . . . . 6 ((𝜑𝑥𝐼) → 0 ∈ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
3736snssd 4722 . . . . 5 ((𝜑𝑥𝐼) → { 0 } ⊆ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))))
3812, 37eqssd 3918 . . . 4 ((𝜑𝑥𝐼) → ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 })
3911, 38jca 515 . . 3 ((𝜑𝑥𝐼) → (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
4039ralrimiva 3105 . 2 (𝜑 → ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))
41 dmdprdd.2 . . 3 (𝜑𝐼𝑉)
422fdmd 6556 . . 3 (𝜑 → dom 𝑆 = 𝐼)
43 dmdprd.z . . . 4 𝑍 = (Cntz‘𝐺)
4443, 14, 31dmdprd 19385 . . 3 ((𝐼𝑉 ∧ dom 𝑆 = 𝐼) → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
4541, 42, 44syl2anc 587 . 2 (𝜑 → (𝐺dom DProd 𝑆 ↔ (𝐺 ∈ Grp ∧ 𝑆:𝐼⟶(SubGrp‘𝐺) ∧ ∀𝑥𝐼 (∀𝑦 ∈ (𝐼 ∖ {𝑥})(𝑆𝑥) ⊆ (𝑍‘(𝑆𝑦)) ∧ ((𝑆𝑥) ∩ (𝐾 (𝑆 “ (𝐼 ∖ {𝑥})))) = { 0 }))))
461, 2, 40, 45mpbir3and 1344 1 (𝜑𝐺dom DProd 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  cdif 3863  cin 3865  wss 3866  𝒫 cpw 4513  {csn 4541   cuni 4819   class class class wbr 5053  dom cdm 5551  ran crn 5552  cima 5554  wf 6376  cfv 6380  Basecbs 16760  0gc0g 16944  Moorecmre 17085  mrClscmrc 17086  ACScacs 17088  Grpcgrp 18365  SubGrpcsubg 18537  Cntzccntz 18709   DProd cdprd 19380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-0g 16946  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-subg 18540  df-dprd 19382
This theorem is referenced by:  dprdss  19416  dprdz  19417  dprdf1o  19419  dprdsn  19423  dprd2da  19429  dmdprdsplit2  19433  ablfac1b  19457
  Copyright terms: Public domain W3C validator