MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsubg Structured version   Visualization version   GIF version

Theorem dprdsubg 19974
Description: The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdsubg (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))

Proof of Theorem dprdsubg
Dummy variables 𝑓 𝑔 𝑖 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . . 4 (Base‘𝐺) = (Base‘𝐺)
21dprdssv 19966 . . 3 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
32a1i 11 . 2 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ⊆ (Base‘𝐺))
4 eqid 2728 . . . 4 (0g𝐺) = (0g𝐺)
5 eqid 2728 . . . 4 {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} = {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}
6 id 22 . . . 4 (𝐺dom DProd 𝑆𝐺dom DProd 𝑆)
7 eqidd 2729 . . . 4 (𝐺dom DProd 𝑆 → dom 𝑆 = dom 𝑆)
8 fvex 6904 . . . . . 6 (0g𝐺) ∈ V
9 fnconstg 6779 . . . . . 6 ((0g𝐺) ∈ V → (dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆)
108, 9mp1i 13 . . . . 5 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆)
118fvconst2 7210 . . . . . . . 8 (𝑘 ∈ dom 𝑆 → ((dom 𝑆 × {(0g𝐺)})‘𝑘) = (0g𝐺))
1211adantl 481 . . . . . . 7 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g𝐺)})‘𝑘) = (0g𝐺))
13 dprdf 19956 . . . . . . . . 9 (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
1413ffvelcdmda 7088 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → (𝑆𝑘) ∈ (SubGrp‘𝐺))
154subg0cl 19082 . . . . . . . 8 ((𝑆𝑘) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑆𝑘))
1614, 15syl 17 . . . . . . 7 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → (0g𝐺) ∈ (𝑆𝑘))
1712, 16eqeltrd 2829 . . . . . 6 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘))
1817ralrimiva 3142 . . . . 5 (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘))
19 df-nel 3043 . . . . . . . 8 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
20 dprddomprc 19950 . . . . . . . 8 (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)
2119, 20sylbir 234 . . . . . . 7 (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆)
2221con4i 114 . . . . . 6 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
238a1i 11 . . . . . 6 (𝐺dom DProd 𝑆 → (0g𝐺) ∈ V)
2422, 23fczfsuppd 9403 . . . . 5 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) finSupp (0g𝐺))
255, 6, 7dprdw 19960 . . . . 5 (𝐺dom DProd 𝑆 → ((dom 𝑆 × {(0g𝐺)}) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ↔ ((dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆 ∧ ∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘) ∧ (dom 𝑆 × {(0g𝐺)}) finSupp (0g𝐺))))
2610, 18, 24, 25mpbir3and 1340 . . . 4 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
274, 5, 6, 7, 26eldprdi 19968 . . 3 (𝐺dom DProd 𝑆 → (𝐺 Σg (dom 𝑆 × {(0g𝐺)})) ∈ (𝐺 DProd 𝑆))
2827ne0d 4331 . 2 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ≠ ∅)
29 eqid 2728 . . . . 5 dom 𝑆 = dom 𝑆
304, 5eldprd 19954 . . . . . . 7 (dom 𝑆 = dom 𝑆 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓))))
3130baibd 539 . . . . . 6 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓)))
324, 5eldprd 19954 . . . . . . 7 (dom 𝑆 = dom 𝑆 → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
3332baibd 539 . . . . . 6 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)))
3431, 33anbi12d 631 . . . . 5 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
3529, 34mpan 689 . . . 4 (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
36 reeanv 3222 . . . . 5 (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)))
37 simpl 482 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝐺dom DProd 𝑆)
38 eqidd 2729 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → dom 𝑆 = dom 𝑆)
39 simprl 770 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
40 simprr 772 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
41 eqid 2728 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
424, 5, 37, 38, 39, 40, 41dprdfsub 19971 . . . . . . . . 9 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝑓f (-g𝐺)𝑔) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ (𝐺 Σg (𝑓f (-g𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔))))
4342simprd 495 . . . . . . . 8 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝐺 Σg (𝑓f (-g𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)))
4442simpld 494 . . . . . . . . 9 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝑓f (-g𝐺)𝑔) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
454, 5, 37, 38, 44eldprdi 19968 . . . . . . . 8 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝐺 Σg (𝑓f (-g𝐺)𝑔)) ∈ (𝐺 DProd 𝑆))
4643, 45eqeltrrd 2830 . . . . . . 7 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆))
47 oveq12 7423 . . . . . . . 8 ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)))
4847eleq1d 2814 . . . . . . 7 ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → ((𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆) ↔ ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆)))
4946, 48syl5ibrcom 246 . . . . . 6 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5049rexlimdvva 3207 . . . . 5 (𝐺dom DProd 𝑆 → (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5136, 50biimtrrid 242 . . . 4 (𝐺dom DProd 𝑆 → ((∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5235, 51sylbid 239 . . 3 (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5352ralrimivv 3194 . 2 (𝐺dom DProd 𝑆 → ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))
54 dprdgrp 19955 . . 3 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
551, 41issubg4 19093 . . 3 (𝐺 ∈ Grp → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))))
5654, 55syl 17 . 2 (𝐺dom DProd 𝑆 → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))))
573, 28, 53, 56mpbir3and 1340 1 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2936  wnel 3042  wral 3057  wrex 3066  {crab 3428  Vcvv 3470  wss 3945  c0 4318  {csn 4624   class class class wbr 5142   × cxp 5670  dom cdm 5672   Fn wfn 6537  cfv 6542  (class class class)co 7414  f cof 7677  Xcixp 8909   finSupp cfsupp 9379  Basecbs 17173  0gc0g 17414   Σg cgsu 17415  Grpcgrp 18883  -gcsg 18885  SubGrpcsubg 19068   DProd cdprd 19943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-fzo 13654  df-seq 13993  df-hash 14316  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-0g 17416  df-gsum 17417  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mhm 18733  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-ghm 19161  df-gim 19206  df-cntz 19261  df-oppg 19290  df-cmn 19730  df-dprd 19945
This theorem is referenced by:  dprdspan  19977  dprdz  19980  dprdcntz2  19988  dprddisj2  19989  dprd2da  19992  dmdprdsplit2lem  19995  dmdprdsplit2  19996  dprdsplit  19998  dpjf  20007  dpjidcl  20008  dpjlid  20011  dpjghm  20013  ablfac1c  20021  ablfac1eulem  20022  ablfac1eu  20023  pgpfaclem1  20031
  Copyright terms: Public domain W3C validator