MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsubg Structured version   Visualization version   GIF version

Theorem dprdsubg 19608
Description: The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdsubg (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))

Proof of Theorem dprdsubg
Dummy variables 𝑓 𝑔 𝑖 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . . 4 (Base‘𝐺) = (Base‘𝐺)
21dprdssv 19600 . . 3 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
32a1i 11 . 2 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ⊆ (Base‘𝐺))
4 eqid 2739 . . . 4 (0g𝐺) = (0g𝐺)
5 eqid 2739 . . . 4 {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} = {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}
6 id 22 . . . 4 (𝐺dom DProd 𝑆𝐺dom DProd 𝑆)
7 eqidd 2740 . . . 4 (𝐺dom DProd 𝑆 → dom 𝑆 = dom 𝑆)
8 fvex 6781 . . . . . 6 (0g𝐺) ∈ V
9 fnconstg 6658 . . . . . 6 ((0g𝐺) ∈ V → (dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆)
108, 9mp1i 13 . . . . 5 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆)
118fvconst2 7073 . . . . . . . 8 (𝑘 ∈ dom 𝑆 → ((dom 𝑆 × {(0g𝐺)})‘𝑘) = (0g𝐺))
1211adantl 481 . . . . . . 7 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g𝐺)})‘𝑘) = (0g𝐺))
13 dprdf 19590 . . . . . . . . 9 (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
1413ffvelrnda 6955 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → (𝑆𝑘) ∈ (SubGrp‘𝐺))
154subg0cl 18744 . . . . . . . 8 ((𝑆𝑘) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑆𝑘))
1614, 15syl 17 . . . . . . 7 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → (0g𝐺) ∈ (𝑆𝑘))
1712, 16eqeltrd 2840 . . . . . 6 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘))
1817ralrimiva 3109 . . . . 5 (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘))
19 df-nel 3051 . . . . . . . 8 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
20 dprddomprc 19584 . . . . . . . 8 (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)
2119, 20sylbir 234 . . . . . . 7 (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆)
2221con4i 114 . . . . . 6 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
238a1i 11 . . . . . 6 (𝐺dom DProd 𝑆 → (0g𝐺) ∈ V)
2422, 23fczfsuppd 9107 . . . . 5 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) finSupp (0g𝐺))
255, 6, 7dprdw 19594 . . . . 5 (𝐺dom DProd 𝑆 → ((dom 𝑆 × {(0g𝐺)}) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ↔ ((dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆 ∧ ∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘) ∧ (dom 𝑆 × {(0g𝐺)}) finSupp (0g𝐺))))
2610, 18, 24, 25mpbir3and 1340 . . . 4 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
274, 5, 6, 7, 26eldprdi 19602 . . 3 (𝐺dom DProd 𝑆 → (𝐺 Σg (dom 𝑆 × {(0g𝐺)})) ∈ (𝐺 DProd 𝑆))
2827ne0d 4274 . 2 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ≠ ∅)
29 eqid 2739 . . . . 5 dom 𝑆 = dom 𝑆
304, 5eldprd 19588 . . . . . . 7 (dom 𝑆 = dom 𝑆 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓))))
3130baibd 539 . . . . . 6 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓)))
324, 5eldprd 19588 . . . . . . 7 (dom 𝑆 = dom 𝑆 → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
3332baibd 539 . . . . . 6 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)))
3431, 33anbi12d 630 . . . . 5 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
3529, 34mpan 686 . . . 4 (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
36 reeanv 3294 . . . . 5 (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)))
37 simpl 482 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝐺dom DProd 𝑆)
38 eqidd 2740 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → dom 𝑆 = dom 𝑆)
39 simprl 767 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
40 simprr 769 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
41 eqid 2739 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
424, 5, 37, 38, 39, 40, 41dprdfsub 19605 . . . . . . . . 9 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝑓f (-g𝐺)𝑔) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ (𝐺 Σg (𝑓f (-g𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔))))
4342simprd 495 . . . . . . . 8 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝐺 Σg (𝑓f (-g𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)))
4442simpld 494 . . . . . . . . 9 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝑓f (-g𝐺)𝑔) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
454, 5, 37, 38, 44eldprdi 19602 . . . . . . . 8 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝐺 Σg (𝑓f (-g𝐺)𝑔)) ∈ (𝐺 DProd 𝑆))
4643, 45eqeltrrd 2841 . . . . . . 7 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆))
47 oveq12 7277 . . . . . . . 8 ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)))
4847eleq1d 2824 . . . . . . 7 ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → ((𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆) ↔ ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆)))
4946, 48syl5ibrcom 246 . . . . . 6 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5049rexlimdvva 3224 . . . . 5 (𝐺dom DProd 𝑆 → (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5136, 50syl5bir 242 . . . 4 (𝐺dom DProd 𝑆 → ((∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5235, 51sylbid 239 . . 3 (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5352ralrimivv 3115 . 2 (𝐺dom DProd 𝑆 → ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))
54 dprdgrp 19589 . . 3 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
551, 41issubg4 18755 . . 3 (𝐺 ∈ Grp → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))))
5654, 55syl 17 . 2 (𝐺dom DProd 𝑆 → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))))
573, 28, 53, 56mpbir3and 1340 1 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wnel 3050  wral 3065  wrex 3066  {crab 3069  Vcvv 3430  wss 3891  c0 4261  {csn 4566   class class class wbr 5078   × cxp 5586  dom cdm 5588   Fn wfn 6425  cfv 6430  (class class class)co 7268  f cof 7522  Xcixp 8659   finSupp cfsupp 9089  Basecbs 16893  0gc0g 17131   Σg cgsu 17132  Grpcgrp 18558  -gcsg 18560  SubGrpcsubg 18730   DProd cdprd 19577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-tpos 8026  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-seq 13703  df-hash 14026  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-0g 17133  df-gsum 17134  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-mhm 18411  df-submnd 18412  df-grp 18561  df-minusg 18562  df-sbg 18563  df-subg 18733  df-ghm 18813  df-gim 18856  df-cntz 18904  df-oppg 18931  df-cmn 19369  df-dprd 19579
This theorem is referenced by:  dprdspan  19611  dprdz  19614  dprdcntz2  19622  dprddisj2  19623  dprd2da  19626  dmdprdsplit2lem  19629  dmdprdsplit2  19630  dprdsplit  19632  dpjf  19641  dpjidcl  19642  dpjlid  19645  dpjghm  19647  ablfac1c  19655  ablfac1eulem  19656  ablfac1eu  19657  pgpfaclem1  19665
  Copyright terms: Public domain W3C validator