| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 2 | 1 | dprdssv 20036 |
. . 3
⊢ (𝐺 DProd 𝑆) ⊆ (Base‘𝐺) |
| 3 | 2 | a1i 11 |
. 2
⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)) |
| 4 | | eqid 2737 |
. . . 4
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 5 | | eqid 2737 |
. . . 4
⊢ {ℎ ∈ X𝑖 ∈
dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} |
| 6 | | id 22 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → 𝐺dom DProd 𝑆) |
| 7 | | eqidd 2738 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → dom 𝑆 = dom 𝑆) |
| 8 | | fvex 6919 |
. . . . . 6
⊢
(0g‘𝐺) ∈ V |
| 9 | | fnconstg 6796 |
. . . . . 6
⊢
((0g‘𝐺) ∈ V → (dom 𝑆 × {(0g‘𝐺)}) Fn dom 𝑆) |
| 10 | 8, 9 | mp1i 13 |
. . . . 5
⊢ (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g‘𝐺)}) Fn dom 𝑆) |
| 11 | 8 | fvconst2 7224 |
. . . . . . . 8
⊢ (𝑘 ∈ dom 𝑆 → ((dom 𝑆 × {(0g‘𝐺)})‘𝑘) = (0g‘𝐺)) |
| 12 | 11 | adantl 481 |
. . . . . . 7
⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g‘𝐺)})‘𝑘) = (0g‘𝐺)) |
| 13 | | dprdf 20026 |
. . . . . . . . 9
⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) |
| 14 | 13 | ffvelcdmda 7104 |
. . . . . . . 8
⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ∈ (SubGrp‘𝐺)) |
| 15 | 4 | subg0cl 19152 |
. . . . . . . 8
⊢ ((𝑆‘𝑘) ∈ (SubGrp‘𝐺) → (0g‘𝐺) ∈ (𝑆‘𝑘)) |
| 16 | 14, 15 | syl 17 |
. . . . . . 7
⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (0g‘𝐺) ∈ (𝑆‘𝑘)) |
| 17 | 12, 16 | eqeltrd 2841 |
. . . . . 6
⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g‘𝐺)})‘𝑘) ∈ (𝑆‘𝑘)) |
| 18 | 17 | ralrimiva 3146 |
. . . . 5
⊢ (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g‘𝐺)})‘𝑘) ∈ (𝑆‘𝑘)) |
| 19 | | df-nel 3047 |
. . . . . . . 8
⊢ (dom
𝑆 ∉ V ↔ ¬
dom 𝑆 ∈
V) |
| 20 | | dprddomprc 20020 |
. . . . . . . 8
⊢ (dom
𝑆 ∉ V → ¬
𝐺dom DProd 𝑆) |
| 21 | 19, 20 | sylbir 235 |
. . . . . . 7
⊢ (¬
dom 𝑆 ∈ V → ¬
𝐺dom DProd 𝑆) |
| 22 | 21 | con4i 114 |
. . . . . 6
⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
| 23 | 8 | a1i 11 |
. . . . . 6
⊢ (𝐺dom DProd 𝑆 → (0g‘𝐺) ∈ V) |
| 24 | 22, 23 | fczfsuppd 9426 |
. . . . 5
⊢ (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g‘𝐺)}) finSupp
(0g‘𝐺)) |
| 25 | 5, 6, 7 | dprdw 20030 |
. . . . 5
⊢ (𝐺dom DProd 𝑆 → ((dom 𝑆 × {(0g‘𝐺)}) ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ↔ ((dom 𝑆 ×
{(0g‘𝐺)})
Fn dom 𝑆 ∧
∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g‘𝐺)})‘𝑘) ∈ (𝑆‘𝑘) ∧ (dom 𝑆 × {(0g‘𝐺)}) finSupp
(0g‘𝐺)))) |
| 26 | 10, 18, 24, 25 | mpbir3and 1343 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g‘𝐺)}) ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) |
| 27 | 4, 5, 6, 7, 26 | eldprdi 20038 |
. . 3
⊢ (𝐺dom DProd 𝑆 → (𝐺 Σg (dom 𝑆 ×
{(0g‘𝐺)}))
∈ (𝐺 DProd 𝑆)) |
| 28 | 27 | ne0d 4342 |
. 2
⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ≠ ∅) |
| 29 | | eqid 2737 |
. . . . 5
⊢ dom 𝑆 = dom 𝑆 |
| 30 | 4, 5 | eldprd 20024 |
. . . . . . 7
⊢ (dom
𝑆 = dom 𝑆 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓)))) |
| 31 | 30 | baibd 539 |
. . . . . 6
⊢ ((dom
𝑆 = dom 𝑆 ∧ 𝐺dom DProd 𝑆) → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓))) |
| 32 | 4, 5 | eldprd 20024 |
. . . . . . 7
⊢ (dom
𝑆 = dom 𝑆 → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑦 = (𝐺 Σg 𝑔)))) |
| 33 | 32 | baibd 539 |
. . . . . 6
⊢ ((dom
𝑆 = dom 𝑆 ∧ 𝐺dom DProd 𝑆) → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑦 = (𝐺 Σg 𝑔))) |
| 34 | 31, 33 | anbi12d 632 |
. . . . 5
⊢ ((dom
𝑆 = dom 𝑆 ∧ 𝐺dom DProd 𝑆) → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑦 = (𝐺 Σg 𝑔)))) |
| 35 | 29, 34 | mpan 690 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑦 = (𝐺 Σg 𝑔)))) |
| 36 | | reeanv 3229 |
. . . . 5
⊢
(∃𝑓 ∈
{ℎ ∈ X𝑖 ∈
dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) ↔ (∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑦 = (𝐺 Σg 𝑔))) |
| 37 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → 𝐺dom DProd 𝑆) |
| 38 | | eqidd 2738 |
. . . . . . . . . 10
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → dom 𝑆 = dom 𝑆) |
| 39 | | simprl 771 |
. . . . . . . . . 10
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) |
| 40 | | simprr 773 |
. . . . . . . . . 10
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) |
| 41 | | eqid 2737 |
. . . . . . . . . 10
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 42 | 4, 5, 37, 38, 39, 40, 41 | dprdfsub 20041 |
. . . . . . . . 9
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → ((𝑓 ∘f
(-g‘𝐺)𝑔) ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ (𝐺 Σg (𝑓 ∘f
(-g‘𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g‘𝐺)(𝐺 Σg 𝑔)))) |
| 43 | 42 | simprd 495 |
. . . . . . . 8
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → (𝐺 Σg (𝑓 ∘f
(-g‘𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g‘𝐺)(𝐺 Σg 𝑔))) |
| 44 | 42 | simpld 494 |
. . . . . . . . 9
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → (𝑓 ∘f
(-g‘𝐺)𝑔) ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) |
| 45 | 4, 5, 37, 38, 44 | eldprdi 20038 |
. . . . . . . 8
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → (𝐺 Σg (𝑓 ∘f
(-g‘𝐺)𝑔)) ∈ (𝐺 DProd 𝑆)) |
| 46 | 43, 45 | eqeltrrd 2842 |
. . . . . . 7
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → ((𝐺 Σg 𝑓)(-g‘𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆)) |
| 47 | | oveq12 7440 |
. . . . . . . 8
⊢ ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g‘𝐺)𝑦) = ((𝐺 Σg 𝑓)(-g‘𝐺)(𝐺 Σg 𝑔))) |
| 48 | 47 | eleq1d 2826 |
. . . . . . 7
⊢ ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → ((𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆) ↔ ((𝐺 Σg 𝑓)(-g‘𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆))) |
| 49 | 46, 48 | syl5ibrcom 247 |
. . . . . 6
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆))) |
| 50 | 49 | rexlimdvva 3213 |
. . . . 5
⊢ (𝐺dom DProd 𝑆 → (∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆))) |
| 51 | 36, 50 | biimtrrid 243 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → ((∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆))) |
| 52 | 35, 51 | sylbid 240 |
. . 3
⊢ (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) → (𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆))) |
| 53 | 52 | ralrimivv 3200 |
. 2
⊢ (𝐺dom DProd 𝑆 → ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆)) |
| 54 | | dprdgrp 20025 |
. . 3
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
| 55 | 1, 41 | issubg4 19163 |
. . 3
⊢ (𝐺 ∈ Grp → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))) |
| 56 | 54, 55 | syl 17 |
. 2
⊢ (𝐺dom DProd 𝑆 → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))) |
| 57 | 3, 28, 53, 56 | mpbir3and 1343 |
1
⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) |