MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsubg Structured version   Visualization version   GIF version

Theorem dprdsubg 19956
Description: The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdsubg (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))

Proof of Theorem dprdsubg
Dummy variables 𝑓 𝑔 𝑖 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝐺) = (Base‘𝐺)
21dprdssv 19948 . . 3 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
32a1i 11 . 2 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ⊆ (Base‘𝐺))
4 eqid 2729 . . . 4 (0g𝐺) = (0g𝐺)
5 eqid 2729 . . . 4 {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} = {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}
6 id 22 . . . 4 (𝐺dom DProd 𝑆𝐺dom DProd 𝑆)
7 eqidd 2730 . . . 4 (𝐺dom DProd 𝑆 → dom 𝑆 = dom 𝑆)
8 fvex 6871 . . . . . 6 (0g𝐺) ∈ V
9 fnconstg 6748 . . . . . 6 ((0g𝐺) ∈ V → (dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆)
108, 9mp1i 13 . . . . 5 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆)
118fvconst2 7178 . . . . . . . 8 (𝑘 ∈ dom 𝑆 → ((dom 𝑆 × {(0g𝐺)})‘𝑘) = (0g𝐺))
1211adantl 481 . . . . . . 7 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g𝐺)})‘𝑘) = (0g𝐺))
13 dprdf 19938 . . . . . . . . 9 (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
1413ffvelcdmda 7056 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → (𝑆𝑘) ∈ (SubGrp‘𝐺))
154subg0cl 19066 . . . . . . . 8 ((𝑆𝑘) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑆𝑘))
1614, 15syl 17 . . . . . . 7 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → (0g𝐺) ∈ (𝑆𝑘))
1712, 16eqeltrd 2828 . . . . . 6 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘))
1817ralrimiva 3125 . . . . 5 (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘))
19 df-nel 3030 . . . . . . . 8 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
20 dprddomprc 19932 . . . . . . . 8 (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)
2119, 20sylbir 235 . . . . . . 7 (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆)
2221con4i 114 . . . . . 6 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
238a1i 11 . . . . . 6 (𝐺dom DProd 𝑆 → (0g𝐺) ∈ V)
2422, 23fczfsuppd 9337 . . . . 5 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) finSupp (0g𝐺))
255, 6, 7dprdw 19942 . . . . 5 (𝐺dom DProd 𝑆 → ((dom 𝑆 × {(0g𝐺)}) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ↔ ((dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆 ∧ ∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘) ∧ (dom 𝑆 × {(0g𝐺)}) finSupp (0g𝐺))))
2610, 18, 24, 25mpbir3and 1343 . . . 4 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
274, 5, 6, 7, 26eldprdi 19950 . . 3 (𝐺dom DProd 𝑆 → (𝐺 Σg (dom 𝑆 × {(0g𝐺)})) ∈ (𝐺 DProd 𝑆))
2827ne0d 4305 . 2 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ≠ ∅)
29 eqid 2729 . . . . 5 dom 𝑆 = dom 𝑆
304, 5eldprd 19936 . . . . . . 7 (dom 𝑆 = dom 𝑆 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓))))
3130baibd 539 . . . . . 6 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓)))
324, 5eldprd 19936 . . . . . . 7 (dom 𝑆 = dom 𝑆 → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
3332baibd 539 . . . . . 6 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)))
3431, 33anbi12d 632 . . . . 5 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
3529, 34mpan 690 . . . 4 (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
36 reeanv 3209 . . . . 5 (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)))
37 simpl 482 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝐺dom DProd 𝑆)
38 eqidd 2730 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → dom 𝑆 = dom 𝑆)
39 simprl 770 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
40 simprr 772 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
41 eqid 2729 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
424, 5, 37, 38, 39, 40, 41dprdfsub 19953 . . . . . . . . 9 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝑓f (-g𝐺)𝑔) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ (𝐺 Σg (𝑓f (-g𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔))))
4342simprd 495 . . . . . . . 8 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝐺 Σg (𝑓f (-g𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)))
4442simpld 494 . . . . . . . . 9 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝑓f (-g𝐺)𝑔) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
454, 5, 37, 38, 44eldprdi 19950 . . . . . . . 8 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝐺 Σg (𝑓f (-g𝐺)𝑔)) ∈ (𝐺 DProd 𝑆))
4643, 45eqeltrrd 2829 . . . . . . 7 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆))
47 oveq12 7396 . . . . . . . 8 ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)))
4847eleq1d 2813 . . . . . . 7 ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → ((𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆) ↔ ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆)))
4946, 48syl5ibrcom 247 . . . . . 6 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5049rexlimdvva 3194 . . . . 5 (𝐺dom DProd 𝑆 → (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5136, 50biimtrrid 243 . . . 4 (𝐺dom DProd 𝑆 → ((∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5235, 51sylbid 240 . . 3 (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5352ralrimivv 3178 . 2 (𝐺dom DProd 𝑆 → ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))
54 dprdgrp 19937 . . 3 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
551, 41issubg4 19077 . . 3 (𝐺 ∈ Grp → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))))
5654, 55syl 17 . 2 (𝐺dom DProd 𝑆 → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))))
573, 28, 53, 56mpbir3and 1343 1 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  c0 4296  {csn 4589   class class class wbr 5107   × cxp 5636  dom cdm 5638   Fn wfn 6506  cfv 6511  (class class class)co 7387  f cof 7651  Xcixp 8870   finSupp cfsupp 9312  Basecbs 17179  0gc0g 17402   Σg cgsu 17403  Grpcgrp 18865  -gcsg 18867  SubGrpcsubg 19052   DProd cdprd 19925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-ghm 19145  df-gim 19191  df-cntz 19249  df-oppg 19278  df-cmn 19712  df-dprd 19927
This theorem is referenced by:  dprdspan  19959  dprdz  19962  dprdcntz2  19970  dprddisj2  19971  dprd2da  19974  dmdprdsplit2lem  19977  dmdprdsplit2  19978  dprdsplit  19980  dpjf  19989  dpjidcl  19990  dpjlid  19993  dpjghm  19995  ablfac1c  20003  ablfac1eulem  20004  ablfac1eu  20005  pgpfaclem1  20013
  Copyright terms: Public domain W3C validator