Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
2 | 1 | dprdssv 19619 |
. . 3
⊢ (𝐺 DProd 𝑆) ⊆ (Base‘𝐺) |
3 | 2 | a1i 11 |
. 2
⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)) |
4 | | eqid 2738 |
. . . 4
⊢
(0g‘𝐺) = (0g‘𝐺) |
5 | | eqid 2738 |
. . . 4
⊢ {ℎ ∈ X𝑖 ∈
dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} = {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} |
6 | | id 22 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → 𝐺dom DProd 𝑆) |
7 | | eqidd 2739 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → dom 𝑆 = dom 𝑆) |
8 | | fvex 6787 |
. . . . . 6
⊢
(0g‘𝐺) ∈ V |
9 | | fnconstg 6662 |
. . . . . 6
⊢
((0g‘𝐺) ∈ V → (dom 𝑆 × {(0g‘𝐺)}) Fn dom 𝑆) |
10 | 8, 9 | mp1i 13 |
. . . . 5
⊢ (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g‘𝐺)}) Fn dom 𝑆) |
11 | 8 | fvconst2 7079 |
. . . . . . . 8
⊢ (𝑘 ∈ dom 𝑆 → ((dom 𝑆 × {(0g‘𝐺)})‘𝑘) = (0g‘𝐺)) |
12 | 11 | adantl 482 |
. . . . . . 7
⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g‘𝐺)})‘𝑘) = (0g‘𝐺)) |
13 | | dprdf 19609 |
. . . . . . . . 9
⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) |
14 | 13 | ffvelrnda 6961 |
. . . . . . . 8
⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (𝑆‘𝑘) ∈ (SubGrp‘𝐺)) |
15 | 4 | subg0cl 18763 |
. . . . . . . 8
⊢ ((𝑆‘𝑘) ∈ (SubGrp‘𝐺) → (0g‘𝐺) ∈ (𝑆‘𝑘)) |
16 | 14, 15 | syl 17 |
. . . . . . 7
⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → (0g‘𝐺) ∈ (𝑆‘𝑘)) |
17 | 12, 16 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝐺dom DProd 𝑆 ∧ 𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g‘𝐺)})‘𝑘) ∈ (𝑆‘𝑘)) |
18 | 17 | ralrimiva 3103 |
. . . . 5
⊢ (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g‘𝐺)})‘𝑘) ∈ (𝑆‘𝑘)) |
19 | | df-nel 3050 |
. . . . . . . 8
⊢ (dom
𝑆 ∉ V ↔ ¬
dom 𝑆 ∈
V) |
20 | | dprddomprc 19603 |
. . . . . . . 8
⊢ (dom
𝑆 ∉ V → ¬
𝐺dom DProd 𝑆) |
21 | 19, 20 | sylbir 234 |
. . . . . . 7
⊢ (¬
dom 𝑆 ∈ V → ¬
𝐺dom DProd 𝑆) |
22 | 21 | con4i 114 |
. . . . . 6
⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
23 | 8 | a1i 11 |
. . . . . 6
⊢ (𝐺dom DProd 𝑆 → (0g‘𝐺) ∈ V) |
24 | 22, 23 | fczfsuppd 9146 |
. . . . 5
⊢ (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g‘𝐺)}) finSupp
(0g‘𝐺)) |
25 | 5, 6, 7 | dprdw 19613 |
. . . . 5
⊢ (𝐺dom DProd 𝑆 → ((dom 𝑆 × {(0g‘𝐺)}) ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ↔ ((dom 𝑆 ×
{(0g‘𝐺)})
Fn dom 𝑆 ∧
∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g‘𝐺)})‘𝑘) ∈ (𝑆‘𝑘) ∧ (dom 𝑆 × {(0g‘𝐺)}) finSupp
(0g‘𝐺)))) |
26 | 10, 18, 24, 25 | mpbir3and 1341 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g‘𝐺)}) ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) |
27 | 4, 5, 6, 7, 26 | eldprdi 19621 |
. . 3
⊢ (𝐺dom DProd 𝑆 → (𝐺 Σg (dom 𝑆 ×
{(0g‘𝐺)}))
∈ (𝐺 DProd 𝑆)) |
28 | 27 | ne0d 4269 |
. 2
⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ≠ ∅) |
29 | | eqid 2738 |
. . . . 5
⊢ dom 𝑆 = dom 𝑆 |
30 | 4, 5 | eldprd 19607 |
. . . . . . 7
⊢ (dom
𝑆 = dom 𝑆 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓)))) |
31 | 30 | baibd 540 |
. . . . . 6
⊢ ((dom
𝑆 = dom 𝑆 ∧ 𝐺dom DProd 𝑆) → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓))) |
32 | 4, 5 | eldprd 19607 |
. . . . . . 7
⊢ (dom
𝑆 = dom 𝑆 → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑦 = (𝐺 Σg 𝑔)))) |
33 | 32 | baibd 540 |
. . . . . 6
⊢ ((dom
𝑆 = dom 𝑆 ∧ 𝐺dom DProd 𝑆) → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑦 = (𝐺 Σg 𝑔))) |
34 | 31, 33 | anbi12d 631 |
. . . . 5
⊢ ((dom
𝑆 = dom 𝑆 ∧ 𝐺dom DProd 𝑆) → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑦 = (𝐺 Σg 𝑔)))) |
35 | 29, 34 | mpan 687 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑦 = (𝐺 Σg 𝑔)))) |
36 | | reeanv 3294 |
. . . . 5
⊢
(∃𝑓 ∈
{ℎ ∈ X𝑖 ∈
dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) ↔ (∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑦 = (𝐺 Σg 𝑔))) |
37 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → 𝐺dom DProd 𝑆) |
38 | | eqidd 2739 |
. . . . . . . . . 10
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → dom 𝑆 = dom 𝑆) |
39 | | simprl 768 |
. . . . . . . . . 10
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → 𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) |
40 | | simprr 770 |
. . . . . . . . . 10
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) |
41 | | eqid 2738 |
. . . . . . . . . 10
⊢
(-g‘𝐺) = (-g‘𝐺) |
42 | 4, 5, 37, 38, 39, 40, 41 | dprdfsub 19624 |
. . . . . . . . 9
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → ((𝑓 ∘f
(-g‘𝐺)𝑔) ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ (𝐺 Σg (𝑓 ∘f
(-g‘𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g‘𝐺)(𝐺 Σg 𝑔)))) |
43 | 42 | simprd 496 |
. . . . . . . 8
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → (𝐺 Σg (𝑓 ∘f
(-g‘𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g‘𝐺)(𝐺 Σg 𝑔))) |
44 | 42 | simpld 495 |
. . . . . . . . 9
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → (𝑓 ∘f
(-g‘𝐺)𝑔) ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}) |
45 | 4, 5, 37, 38, 44 | eldprdi 19621 |
. . . . . . . 8
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → (𝐺 Σg (𝑓 ∘f
(-g‘𝐺)𝑔)) ∈ (𝐺 DProd 𝑆)) |
46 | 43, 45 | eqeltrrd 2840 |
. . . . . . 7
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → ((𝐺 Σg 𝑓)(-g‘𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆)) |
47 | | oveq12 7284 |
. . . . . . . 8
⊢ ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g‘𝐺)𝑦) = ((𝐺 Σg 𝑓)(-g‘𝐺)(𝐺 Σg 𝑔))) |
48 | 47 | eleq1d 2823 |
. . . . . . 7
⊢ ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → ((𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆) ↔ ((𝐺 Σg 𝑓)(-g‘𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆))) |
49 | 46, 48 | syl5ibrcom 246 |
. . . . . 6
⊢ ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} ∧ 𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)})) → ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆))) |
50 | 49 | rexlimdvva 3223 |
. . . . 5
⊢ (𝐺dom DProd 𝑆 → (∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆))) |
51 | 36, 50 | syl5bir 242 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → ((∃𝑓 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {ℎ ∈ X𝑖 ∈ dom 𝑆(𝑆‘𝑖) ∣ ℎ finSupp (0g‘𝐺)}𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆))) |
52 | 35, 51 | sylbid 239 |
. . 3
⊢ (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) → (𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆))) |
53 | 52 | ralrimivv 3122 |
. 2
⊢ (𝐺dom DProd 𝑆 → ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆)) |
54 | | dprdgrp 19608 |
. . 3
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
55 | 1, 41 | issubg4 18774 |
. . 3
⊢ (𝐺 ∈ Grp → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))) |
56 | 54, 55 | syl 17 |
. 2
⊢ (𝐺dom DProd 𝑆 → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g‘𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))) |
57 | 3, 28, 53, 56 | mpbir3and 1341 |
1
⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) |