MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsubg Structured version   Visualization version   GIF version

Theorem dprdsubg 19939
Description: The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdsubg (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))

Proof of Theorem dprdsubg
Dummy variables 𝑓 𝑔 𝑖 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝐺) = (Base‘𝐺)
21dprdssv 19931 . . 3 (𝐺 DProd 𝑆) ⊆ (Base‘𝐺)
32a1i 11 . 2 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ⊆ (Base‘𝐺))
4 eqid 2731 . . . 4 (0g𝐺) = (0g𝐺)
5 eqid 2731 . . . 4 {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} = {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}
6 id 22 . . . 4 (𝐺dom DProd 𝑆𝐺dom DProd 𝑆)
7 eqidd 2732 . . . 4 (𝐺dom DProd 𝑆 → dom 𝑆 = dom 𝑆)
8 fvex 6835 . . . . . 6 (0g𝐺) ∈ V
9 fnconstg 6711 . . . . . 6 ((0g𝐺) ∈ V → (dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆)
108, 9mp1i 13 . . . . 5 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆)
118fvconst2 7138 . . . . . . . 8 (𝑘 ∈ dom 𝑆 → ((dom 𝑆 × {(0g𝐺)})‘𝑘) = (0g𝐺))
1211adantl 481 . . . . . . 7 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g𝐺)})‘𝑘) = (0g𝐺))
13 dprdf 19921 . . . . . . . . 9 (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
1413ffvelcdmda 7017 . . . . . . . 8 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → (𝑆𝑘) ∈ (SubGrp‘𝐺))
154subg0cl 19047 . . . . . . . 8 ((𝑆𝑘) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝑆𝑘))
1614, 15syl 17 . . . . . . 7 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → (0g𝐺) ∈ (𝑆𝑘))
1712, 16eqeltrd 2831 . . . . . 6 ((𝐺dom DProd 𝑆𝑘 ∈ dom 𝑆) → ((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘))
1817ralrimiva 3124 . . . . 5 (𝐺dom DProd 𝑆 → ∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘))
19 df-nel 3033 . . . . . . . 8 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
20 dprddomprc 19915 . . . . . . . 8 (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)
2119, 20sylbir 235 . . . . . . 7 (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆)
2221con4i 114 . . . . . 6 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
238a1i 11 . . . . . 6 (𝐺dom DProd 𝑆 → (0g𝐺) ∈ V)
2422, 23fczfsuppd 9270 . . . . 5 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) finSupp (0g𝐺))
255, 6, 7dprdw 19925 . . . . 5 (𝐺dom DProd 𝑆 → ((dom 𝑆 × {(0g𝐺)}) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ↔ ((dom 𝑆 × {(0g𝐺)}) Fn dom 𝑆 ∧ ∀𝑘 ∈ dom 𝑆((dom 𝑆 × {(0g𝐺)})‘𝑘) ∈ (𝑆𝑘) ∧ (dom 𝑆 × {(0g𝐺)}) finSupp (0g𝐺))))
2610, 18, 24, 25mpbir3and 1343 . . . 4 (𝐺dom DProd 𝑆 → (dom 𝑆 × {(0g𝐺)}) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
274, 5, 6, 7, 26eldprdi 19933 . . 3 (𝐺dom DProd 𝑆 → (𝐺 Σg (dom 𝑆 × {(0g𝐺)})) ∈ (𝐺 DProd 𝑆))
2827ne0d 4292 . 2 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ≠ ∅)
29 eqid 2731 . . . . 5 dom 𝑆 = dom 𝑆
304, 5eldprd 19919 . . . . . . 7 (dom 𝑆 = dom 𝑆 → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓))))
3130baibd 539 . . . . . 6 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → (𝑥 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓)))
324, 5eldprd 19919 . . . . . . 7 (dom 𝑆 = dom 𝑆 → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ (𝐺dom DProd 𝑆 ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
3332baibd 539 . . . . . 6 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → (𝑦 ∈ (𝐺 DProd 𝑆) ↔ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)))
3431, 33anbi12d 632 . . . . 5 ((dom 𝑆 = dom 𝑆𝐺dom DProd 𝑆) → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
3529, 34mpan 690 . . . 4 (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔))))
36 reeanv 3204 . . . . 5 (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) ↔ (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)))
37 simpl 482 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝐺dom DProd 𝑆)
38 eqidd 2732 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → dom 𝑆 = dom 𝑆)
39 simprl 770 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
40 simprr 772 . . . . . . . . . 10 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
41 eqid 2731 . . . . . . . . . 10 (-g𝐺) = (-g𝐺)
424, 5, 37, 38, 39, 40, 41dprdfsub 19936 . . . . . . . . 9 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝑓f (-g𝐺)𝑔) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ (𝐺 Σg (𝑓f (-g𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔))))
4342simprd 495 . . . . . . . 8 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝐺 Σg (𝑓f (-g𝐺)𝑔)) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)))
4442simpld 494 . . . . . . . . 9 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝑓f (-g𝐺)𝑔) ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})
454, 5, 37, 38, 44eldprdi 19933 . . . . . . . 8 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → (𝐺 Σg (𝑓f (-g𝐺)𝑔)) ∈ (𝐺 DProd 𝑆))
4643, 45eqeltrrd 2832 . . . . . . 7 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆))
47 oveq12 7355 . . . . . . . 8 ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) = ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)))
4847eleq1d 2816 . . . . . . 7 ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → ((𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆) ↔ ((𝐺 Σg 𝑓)(-g𝐺)(𝐺 Σg 𝑔)) ∈ (𝐺 DProd 𝑆)))
4946, 48syl5ibrcom 247 . . . . . 6 ((𝐺dom DProd 𝑆 ∧ (𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} ∧ 𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)})) → ((𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5049rexlimdvva 3189 . . . . 5 (𝐺dom DProd 𝑆 → (∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)} (𝑥 = (𝐺 Σg 𝑓) ∧ 𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5136, 50biimtrrid 243 . . . 4 (𝐺dom DProd 𝑆 → ((∃𝑓 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑥 = (𝐺 Σg 𝑓) ∧ ∃𝑔 ∈ {X𝑖 ∈ dom 𝑆(𝑆𝑖) ∣ finSupp (0g𝐺)}𝑦 = (𝐺 Σg 𝑔)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5235, 51sylbid 240 . . 3 (𝐺dom DProd 𝑆 → ((𝑥 ∈ (𝐺 DProd 𝑆) ∧ 𝑦 ∈ (𝐺 DProd 𝑆)) → (𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆)))
5352ralrimivv 3173 . 2 (𝐺dom DProd 𝑆 → ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))
54 dprdgrp 19920 . . 3 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
551, 41issubg4 19058 . . 3 (𝐺 ∈ Grp → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))))
5654, 55syl 17 . 2 (𝐺dom DProd 𝑆 → ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ↔ ((𝐺 DProd 𝑆) ⊆ (Base‘𝐺) ∧ (𝐺 DProd 𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝐺 DProd 𝑆)∀𝑦 ∈ (𝐺 DProd 𝑆)(𝑥(-g𝐺)𝑦) ∈ (𝐺 DProd 𝑆))))
573, 28, 53, 56mpbir3and 1343 1 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wnel 3032  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3902  c0 4283  {csn 4576   class class class wbr 5091   × cxp 5614  dom cdm 5616   Fn wfn 6476  cfv 6481  (class class class)co 7346  f cof 7608  Xcixp 8821   finSupp cfsupp 9245  Basecbs 17120  0gc0g 17343   Σg cgsu 17344  Grpcgrp 18846  -gcsg 18848  SubGrpcsubg 19033   DProd cdprd 19908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19126  df-gim 19172  df-cntz 19230  df-oppg 19259  df-cmn 19695  df-dprd 19910
This theorem is referenced by:  dprdspan  19942  dprdz  19945  dprdcntz2  19953  dprddisj2  19954  dprd2da  19957  dmdprdsplit2lem  19960  dmdprdsplit2  19961  dprdsplit  19963  dpjf  19972  dpjidcl  19973  dpjlid  19976  dpjghm  19978  ablfac1c  19986  ablfac1eulem  19987  ablfac1eu  19988  pgpfaclem1  19996
  Copyright terms: Public domain W3C validator