Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dprddomcld | Structured version Visualization version GIF version |
Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.) |
Ref | Expression |
---|---|
dprddomcld.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprddomcld.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
Ref | Expression |
---|---|
dprddomcld | ⊢ (𝜑 → 𝐼 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprddomcld.2 | . 2 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
2 | dprddomcld.1 | . 2 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
3 | df-nel 3051 | . . . . 5 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
4 | dprddomprc 19584 | . . . . 5 ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) | |
5 | 3, 4 | sylbir 234 | . . . 4 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆) |
6 | 5 | con4i 114 | . . 3 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
7 | eleq1 2827 | . . 3 ⊢ (dom 𝑆 = 𝐼 → (dom 𝑆 ∈ V ↔ 𝐼 ∈ V)) | |
8 | 6, 7 | syl5ib 243 | . 2 ⊢ (dom 𝑆 = 𝐼 → (𝐺dom DProd 𝑆 → 𝐼 ∈ V)) |
9 | 1, 2, 8 | sylc 65 | 1 ⊢ (𝜑 → 𝐼 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2109 ∉ wnel 3050 Vcvv 3430 class class class wbr 5078 dom cdm 5588 DProd cdprd 19577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-dm 5598 df-rn 5599 df-oprab 7272 df-mpo 7273 df-dprd 19579 |
This theorem is referenced by: dprdcntz 19592 dprddisj 19593 dprdw 19594 dprdwd 19595 dprdfid 19601 dprdfinv 19603 dprdfadd 19604 dprdfsub 19605 dprdfeq0 19606 dprdf11 19607 dprdlub 19610 dprdres 19612 dprdss 19613 dprdf1o 19616 dmdprdsplitlem 19621 dprddisj2 19623 dmdprdsplit2 19630 dpjfval 19639 dpjidcl 19642 |
Copyright terms: Public domain | W3C validator |