| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprddomcld | Structured version Visualization version GIF version | ||
| Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprddomcld.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprddomcld.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| Ref | Expression |
|---|---|
| dprddomcld | ⊢ (𝜑 → 𝐼 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprddomcld.2 | . 2 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 2 | dprddomcld.1 | . 2 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 3 | df-nel 3030 | . . . . 5 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
| 4 | dprddomprc 19932 | . . . . 5 ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) | |
| 5 | 3, 4 | sylbir 235 | . . . 4 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆) |
| 6 | 5 | con4i 114 | . . 3 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
| 7 | eleq1 2816 | . . 3 ⊢ (dom 𝑆 = 𝐼 → (dom 𝑆 ∈ V ↔ 𝐼 ∈ V)) | |
| 8 | 6, 7 | imbitrid 244 | . 2 ⊢ (dom 𝑆 = 𝐼 → (𝐺dom DProd 𝑆 → 𝐼 ∈ V)) |
| 9 | 1, 2, 8 | sylc 65 | 1 ⊢ (𝜑 → 𝐼 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 Vcvv 3447 class class class wbr 5107 dom cdm 5638 DProd cdprd 19925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-oprab 7391 df-mpo 7392 df-dprd 19927 |
| This theorem is referenced by: dprdcntz 19940 dprddisj 19941 dprdw 19942 dprdwd 19943 dprdfid 19949 dprdfinv 19951 dprdfadd 19952 dprdfsub 19953 dprdfeq0 19954 dprdf11 19955 dprdlub 19958 dprdres 19960 dprdss 19961 dprdf1o 19964 dmdprdsplitlem 19969 dprddisj2 19971 dmdprdsplit2 19978 dpjfval 19987 dpjidcl 19990 |
| Copyright terms: Public domain | W3C validator |