| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprddomcld | Structured version Visualization version GIF version | ||
| Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprddomcld.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprddomcld.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| Ref | Expression |
|---|---|
| dprddomcld | ⊢ (𝜑 → 𝐼 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprddomcld.2 | . 2 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 2 | dprddomcld.1 | . 2 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 3 | df-nel 3030 | . . . . 5 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
| 4 | dprddomprc 19908 | . . . . 5 ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) | |
| 5 | 3, 4 | sylbir 235 | . . . 4 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆) |
| 6 | 5 | con4i 114 | . . 3 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
| 7 | eleq1 2816 | . . 3 ⊢ (dom 𝑆 = 𝐼 → (dom 𝑆 ∈ V ↔ 𝐼 ∈ V)) | |
| 8 | 6, 7 | imbitrid 244 | . 2 ⊢ (dom 𝑆 = 𝐼 → (𝐺dom DProd 𝑆 → 𝐼 ∈ V)) |
| 9 | 1, 2, 8 | sylc 65 | 1 ⊢ (𝜑 → 𝐼 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 Vcvv 3444 class class class wbr 5102 dom cdm 5631 DProd cdprd 19901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-oprab 7373 df-mpo 7374 df-dprd 19903 |
| This theorem is referenced by: dprdcntz 19916 dprddisj 19917 dprdw 19918 dprdwd 19919 dprdfid 19925 dprdfinv 19927 dprdfadd 19928 dprdfsub 19929 dprdfeq0 19930 dprdf11 19931 dprdlub 19934 dprdres 19936 dprdss 19937 dprdf1o 19940 dmdprdsplitlem 19945 dprddisj2 19947 dmdprdsplit2 19954 dpjfval 19963 dpjidcl 19966 |
| Copyright terms: Public domain | W3C validator |