MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddomcld Structured version   Visualization version   GIF version

Theorem dprddomcld 19933
Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.)
Hypotheses
Ref Expression
dprddomcld.1 (𝜑𝐺dom DProd 𝑆)
dprddomcld.2 (𝜑 → dom 𝑆 = 𝐼)
Assertion
Ref Expression
dprddomcld (𝜑𝐼 ∈ V)

Proof of Theorem dprddomcld
StepHypRef Expression
1 dprddomcld.2 . 2 (𝜑 → dom 𝑆 = 𝐼)
2 dprddomcld.1 . 2 (𝜑𝐺dom DProd 𝑆)
3 df-nel 3030 . . . . 5 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
4 dprddomprc 19932 . . . . 5 (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)
53, 4sylbir 235 . . . 4 (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆)
65con4i 114 . . 3 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
7 eleq1 2816 . . 3 (dom 𝑆 = 𝐼 → (dom 𝑆 ∈ V ↔ 𝐼 ∈ V))
86, 7imbitrid 244 . 2 (dom 𝑆 = 𝐼 → (𝐺dom DProd 𝑆𝐼 ∈ V))
91, 2, 8sylc 65 1 (𝜑𝐼 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wnel 3029  Vcvv 3447   class class class wbr 5107  dom cdm 5638   DProd cdprd 19925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-oprab 7391  df-mpo 7392  df-dprd 19927
This theorem is referenced by:  dprdcntz  19940  dprddisj  19941  dprdw  19942  dprdwd  19943  dprdfid  19949  dprdfinv  19951  dprdfadd  19952  dprdfsub  19953  dprdfeq0  19954  dprdf11  19955  dprdlub  19958  dprdres  19960  dprdss  19961  dprdf1o  19964  dmdprdsplitlem  19969  dprddisj2  19971  dmdprdsplit2  19978  dpjfval  19987  dpjidcl  19990
  Copyright terms: Public domain W3C validator