| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprddomcld | Structured version Visualization version GIF version | ||
| Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprddomcld.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprddomcld.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| Ref | Expression |
|---|---|
| dprddomcld | ⊢ (𝜑 → 𝐼 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprddomcld.2 | . 2 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 2 | dprddomcld.1 | . 2 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 3 | df-nel 3031 | . . . . 5 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
| 4 | dprddomprc 19939 | . . . . 5 ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) | |
| 5 | 3, 4 | sylbir 235 | . . . 4 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆) |
| 6 | 5 | con4i 114 | . . 3 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
| 7 | eleq1 2817 | . . 3 ⊢ (dom 𝑆 = 𝐼 → (dom 𝑆 ∈ V ↔ 𝐼 ∈ V)) | |
| 8 | 6, 7 | imbitrid 244 | . 2 ⊢ (dom 𝑆 = 𝐼 → (𝐺dom DProd 𝑆 → 𝐼 ∈ V)) |
| 9 | 1, 2, 8 | sylc 65 | 1 ⊢ (𝜑 → 𝐼 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 Vcvv 3450 class class class wbr 5110 dom cdm 5641 DProd cdprd 19932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-oprab 7394 df-mpo 7395 df-dprd 19934 |
| This theorem is referenced by: dprdcntz 19947 dprddisj 19948 dprdw 19949 dprdwd 19950 dprdfid 19956 dprdfinv 19958 dprdfadd 19959 dprdfsub 19960 dprdfeq0 19961 dprdf11 19962 dprdlub 19965 dprdres 19967 dprdss 19968 dprdf1o 19971 dmdprdsplitlem 19976 dprddisj2 19978 dmdprdsplit2 19985 dpjfval 19994 dpjidcl 19997 |
| Copyright terms: Public domain | W3C validator |