MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprddomcld Structured version   Visualization version   GIF version

Theorem dprddomcld 19940
Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.)
Hypotheses
Ref Expression
dprddomcld.1 (𝜑𝐺dom DProd 𝑆)
dprddomcld.2 (𝜑 → dom 𝑆 = 𝐼)
Assertion
Ref Expression
dprddomcld (𝜑𝐼 ∈ V)

Proof of Theorem dprddomcld
StepHypRef Expression
1 dprddomcld.2 . 2 (𝜑 → dom 𝑆 = 𝐼)
2 dprddomcld.1 . 2 (𝜑𝐺dom DProd 𝑆)
3 df-nel 3031 . . . . 5 (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V)
4 dprddomprc 19939 . . . . 5 (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆)
53, 4sylbir 235 . . . 4 (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆)
65con4i 114 . . 3 (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V)
7 eleq1 2817 . . 3 (dom 𝑆 = 𝐼 → (dom 𝑆 ∈ V ↔ 𝐼 ∈ V))
86, 7imbitrid 244 . 2 (dom 𝑆 = 𝐼 → (𝐺dom DProd 𝑆𝐼 ∈ V))
91, 2, 8sylc 65 1 (𝜑𝐼 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wnel 3030  Vcvv 3450   class class class wbr 5110  dom cdm 5641   DProd cdprd 19932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-oprab 7394  df-mpo 7395  df-dprd 19934
This theorem is referenced by:  dprdcntz  19947  dprddisj  19948  dprdw  19949  dprdwd  19950  dprdfid  19956  dprdfinv  19958  dprdfadd  19959  dprdfsub  19960  dprdfeq0  19961  dprdf11  19962  dprdlub  19965  dprdres  19967  dprdss  19968  dprdf1o  19971  dmdprdsplitlem  19976  dprddisj2  19978  dmdprdsplit2  19985  dpjfval  19994  dpjidcl  19997
  Copyright terms: Public domain W3C validator