| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprddomcld | Structured version Visualization version GIF version | ||
| Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprddomcld.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprddomcld.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| Ref | Expression |
|---|---|
| dprddomcld | ⊢ (𝜑 → 𝐼 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprddomcld.2 | . 2 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 2 | dprddomcld.1 | . 2 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 3 | df-nel 3030 | . . . . 5 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
| 4 | dprddomprc 19881 | . . . . 5 ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) | |
| 5 | 3, 4 | sylbir 235 | . . . 4 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆) |
| 6 | 5 | con4i 114 | . . 3 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
| 7 | eleq1 2816 | . . 3 ⊢ (dom 𝑆 = 𝐼 → (dom 𝑆 ∈ V ↔ 𝐼 ∈ V)) | |
| 8 | 6, 7 | imbitrid 244 | . 2 ⊢ (dom 𝑆 = 𝐼 → (𝐺dom DProd 𝑆 → 𝐼 ∈ V)) |
| 9 | 1, 2, 8 | sylc 65 | 1 ⊢ (𝜑 → 𝐼 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 Vcvv 3436 class class class wbr 5092 dom cdm 5619 DProd cdprd 19874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-oprab 7353 df-mpo 7354 df-dprd 19876 |
| This theorem is referenced by: dprdcntz 19889 dprddisj 19890 dprdw 19891 dprdwd 19892 dprdfid 19898 dprdfinv 19900 dprdfadd 19901 dprdfsub 19902 dprdfeq0 19903 dprdf11 19904 dprdlub 19907 dprdres 19909 dprdss 19910 dprdf1o 19913 dmdprdsplitlem 19918 dprddisj2 19920 dmdprdsplit2 19927 dpjfval 19936 dpjidcl 19939 |
| Copyright terms: Public domain | W3C validator |