| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dprddomcld | Structured version Visualization version GIF version | ||
| Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| dprddomcld.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| dprddomcld.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| Ref | Expression |
|---|---|
| dprddomcld | ⊢ (𝜑 → 𝐼 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprddomcld.2 | . 2 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
| 2 | dprddomcld.1 | . 2 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
| 3 | df-nel 3033 | . . . . 5 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
| 4 | dprddomprc 19914 | . . . . 5 ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) | |
| 5 | 3, 4 | sylbir 235 | . . . 4 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆) |
| 6 | 5 | con4i 114 | . . 3 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
| 7 | eleq1 2819 | . . 3 ⊢ (dom 𝑆 = 𝐼 → (dom 𝑆 ∈ V ↔ 𝐼 ∈ V)) | |
| 8 | 6, 7 | imbitrid 244 | . 2 ⊢ (dom 𝑆 = 𝐼 → (𝐺dom DProd 𝑆 → 𝐼 ∈ V)) |
| 9 | 1, 2, 8 | sylc 65 | 1 ⊢ (𝜑 → 𝐼 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 Vcvv 3436 class class class wbr 5089 dom cdm 5614 DProd cdprd 19907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-oprab 7350 df-mpo 7351 df-dprd 19909 |
| This theorem is referenced by: dprdcntz 19922 dprddisj 19923 dprdw 19924 dprdwd 19925 dprdfid 19931 dprdfinv 19933 dprdfadd 19934 dprdfsub 19935 dprdfeq0 19936 dprdf11 19937 dprdlub 19940 dprdres 19942 dprdss 19943 dprdf1o 19946 dmdprdsplitlem 19951 dprddisj2 19953 dmdprdsplit2 19960 dpjfval 19969 dpjidcl 19972 |
| Copyright terms: Public domain | W3C validator |