![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dprddomcld | Structured version Visualization version GIF version |
Description: If a family of subgroups is a family of subgroups for an internal direct product, then it is indexed by a set. (Contributed by AV, 13-Jul-2019.) |
Ref | Expression |
---|---|
dprddomcld.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dprddomcld.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
Ref | Expression |
---|---|
dprddomcld | ⊢ (𝜑 → 𝐼 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprddomcld.2 | . 2 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
2 | dprddomcld.1 | . 2 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
3 | df-nel 3045 | . . . . 5 ⊢ (dom 𝑆 ∉ V ↔ ¬ dom 𝑆 ∈ V) | |
4 | dprddomprc 19911 | . . . . 5 ⊢ (dom 𝑆 ∉ V → ¬ 𝐺dom DProd 𝑆) | |
5 | 3, 4 | sylbir 234 | . . . 4 ⊢ (¬ dom 𝑆 ∈ V → ¬ 𝐺dom DProd 𝑆) |
6 | 5 | con4i 114 | . . 3 ⊢ (𝐺dom DProd 𝑆 → dom 𝑆 ∈ V) |
7 | eleq1 2819 | . . 3 ⊢ (dom 𝑆 = 𝐼 → (dom 𝑆 ∈ V ↔ 𝐼 ∈ V)) | |
8 | 6, 7 | imbitrid 243 | . 2 ⊢ (dom 𝑆 = 𝐼 → (𝐺dom DProd 𝑆 → 𝐼 ∈ V)) |
9 | 1, 2, 8 | sylc 65 | 1 ⊢ (𝜑 → 𝐼 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2104 ∉ wnel 3044 Vcvv 3472 class class class wbr 5147 dom cdm 5675 DProd cdprd 19904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-dm 5685 df-rn 5686 df-oprab 7415 df-mpo 7416 df-dprd 19906 |
This theorem is referenced by: dprdcntz 19919 dprddisj 19920 dprdw 19921 dprdwd 19922 dprdfid 19928 dprdfinv 19930 dprdfadd 19931 dprdfsub 19932 dprdfeq0 19933 dprdf11 19934 dprdlub 19937 dprdres 19939 dprdss 19940 dprdf1o 19943 dmdprdsplitlem 19948 dprddisj2 19950 dmdprdsplit2 19957 dpjfval 19966 dpjidcl 19969 |
Copyright terms: Public domain | W3C validator |