MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem1 Structured version   Visualization version   GIF version

Theorem sylow2blem1 19557
Description: Lemma for sylow2b 19560. Evaluate the group action on a left coset. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x 𝑋 = (Base‘𝐺)
sylow2b.xf (𝜑𝑋 ∈ Fin)
sylow2b.h (𝜑𝐻 ∈ (SubGrp‘𝐺))
sylow2b.k (𝜑𝐾 ∈ (SubGrp‘𝐺))
sylow2b.a + = (+g𝐺)
sylow2b.r = (𝐺 ~QG 𝐾)
sylow2b.m · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
Assertion
Ref Expression
sylow2blem1 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 · [𝐶] ) = [(𝐵 + 𝐶)] )
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝐾,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝜑,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sylow2blem1
StepHypRef Expression
1 simp2 1137 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → 𝐵𝐻)
2 sylow2b.r . . . . 5 = (𝐺 ~QG 𝐾)
32ovexi 7424 . . . 4 ∈ V
4 simp3 1138 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → 𝐶𝑋)
5 ecelqsw 8745 . . . 4 (( ∈ V ∧ 𝐶𝑋) → [𝐶] ∈ (𝑋 / ))
63, 4, 5sylancr 587 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] ∈ (𝑋 / ))
7 simpr 484 . . . . . 6 ((𝑥 = 𝐵𝑦 = [𝐶] ) → 𝑦 = [𝐶] )
8 simpl 482 . . . . . . 7 ((𝑥 = 𝐵𝑦 = [𝐶] ) → 𝑥 = 𝐵)
98oveq1d 7405 . . . . . 6 ((𝑥 = 𝐵𝑦 = [𝐶] ) → (𝑥 + 𝑧) = (𝐵 + 𝑧))
107, 9mpteq12dv 5197 . . . . 5 ((𝑥 = 𝐵𝑦 = [𝐶] ) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
1110rneqd 5905 . . . 4 ((𝑥 = 𝐵𝑦 = [𝐶] ) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
12 sylow2b.m . . . 4 · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
13 ecexg 8678 . . . . . . 7 ( ∈ V → [𝐶] ∈ V)
143, 13ax-mp 5 . . . . . 6 [𝐶] ∈ V
1514mptex 7200 . . . . 5 (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ∈ V
1615rnex 7889 . . . 4 ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ∈ V
1711, 12, 16ovmpoa 7547 . . 3 ((𝐵𝐻 ∧ [𝐶] ∈ (𝑋 / )) → (𝐵 · [𝐶] ) = ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
181, 6, 17syl2anc 584 . 2 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 · [𝐶] ) = ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
19 sylow2b.xf . . . . 5 (𝜑𝑋 ∈ Fin)
20 sylow2b.k . . . . . . 7 (𝜑𝐾 ∈ (SubGrp‘𝐺))
21 sylow2b.x . . . . . . . 8 𝑋 = (Base‘𝐺)
2221, 2eqger 19117 . . . . . . 7 (𝐾 ∈ (SubGrp‘𝐺) → Er 𝑋)
2320, 22syl 17 . . . . . 6 (𝜑 Er 𝑋)
2423ecss 8725 . . . . 5 (𝜑 → [(𝐵 + 𝐶)] 𝑋)
2519, 24ssfid 9219 . . . 4 (𝜑 → [(𝐵 + 𝐶)] ∈ Fin)
26253ad2ant1 1133 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → [(𝐵 + 𝐶)] ∈ Fin)
27 vex 3454 . . . . . . . 8 𝑧 ∈ V
28 elecg 8718 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝐶𝑋) → (𝑧 ∈ [𝐶] 𝐶 𝑧))
2927, 4, 28sylancr 587 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] 𝐶 𝑧))
3029biimpa 476 . . . . . 6 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝑧 ∈ [𝐶] ) → 𝐶 𝑧)
31 sylow2b.h . . . . . . . . . . . 12 (𝜑𝐻 ∈ (SubGrp‘𝐺))
32 subgrcl 19070 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
3331, 32syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ Grp)
34333ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝐵𝐻𝐶𝑋) → 𝐺 ∈ Grp)
3521subgss 19066 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
3631, 35syl 17 . . . . . . . . . . . 12 (𝜑𝐻𝑋)
37363ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝐵𝐻𝐶𝑋) → 𝐻𝑋)
3837, 1sseldd 3950 . . . . . . . . . 10 ((𝜑𝐵𝐻𝐶𝑋) → 𝐵𝑋)
39 sylow2b.a . . . . . . . . . . 11 + = (+g𝐺)
4021, 39grpcl 18880 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
4134, 38, 4, 40syl3anc 1373 . . . . . . . . 9 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
4241adantr 480 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝐶) ∈ 𝑋)
4334adantr 480 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → 𝐺 ∈ Grp)
4438adantr 480 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → 𝐵𝑋)
4521subgss 19066 . . . . . . . . . . . . . 14 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
4620, 45syl 17 . . . . . . . . . . . . 13 (𝜑𝐾𝑋)
47 eqid 2730 . . . . . . . . . . . . . 14 (invg𝐺) = (invg𝐺)
4821, 47, 39, 2eqgval 19116 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝐾𝑋) → (𝐶 𝑧 ↔ (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)))
4933, 46, 48syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑧 ↔ (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)))
50493ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝐵𝐻𝐶𝑋) → (𝐶 𝑧 ↔ (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)))
5150biimpa 476 . . . . . . . . . 10 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾))
5251simp2d 1143 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → 𝑧𝑋)
5321, 39grpcl 18880 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝑧𝑋) → (𝐵 + 𝑧) ∈ 𝑋)
5443, 44, 52, 53syl3anc 1373 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝑧) ∈ 𝑋)
5521, 47grpinvcl 18926 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐵 + 𝐶) ∈ 𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋)
5634, 41, 55syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋)
5756adantr 480 . . . . . . . . . . 11 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋)
5821, 39grpass 18881 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋𝐵𝑋𝑧𝑋)) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)))
5943, 57, 44, 52, 58syl13anc 1374 . . . . . . . . . 10 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)))
6021, 39, 47grpinvadd 18957 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6134, 38, 4, 60syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6221, 47grpinvcl 18926 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝐶𝑋) → ((invg𝐺)‘𝐶) ∈ 𝑋)
6334, 4, 62syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘𝐶) ∈ 𝑋)
64 eqid 2730 . . . . . . . . . . . . . . . . 17 (-g𝐺) = (-g𝐺)
6521, 39, 47, 64grpsubval 18924 . . . . . . . . . . . . . . . 16 ((((invg𝐺)‘𝐶) ∈ 𝑋𝐵𝑋) → (((invg𝐺)‘𝐶)(-g𝐺)𝐵) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6663, 38, 65syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝐵𝐻𝐶𝑋) → (((invg𝐺)‘𝐶)(-g𝐺)𝐵) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6761, 66eqtr4d 2768 . . . . . . . . . . . . . 14 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) = (((invg𝐺)‘𝐶)(-g𝐺)𝐵))
6867oveq1d 7405 . . . . . . . . . . . . 13 ((𝜑𝐵𝐻𝐶𝑋) → (((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) = ((((invg𝐺)‘𝐶)(-g𝐺)𝐵) + 𝐵))
6921, 39, 64grpnpcan 18971 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐶) ∈ 𝑋𝐵𝑋) → ((((invg𝐺)‘𝐶)(-g𝐺)𝐵) + 𝐵) = ((invg𝐺)‘𝐶))
7034, 63, 38, 69syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝐵𝐻𝐶𝑋) → ((((invg𝐺)‘𝐶)(-g𝐺)𝐵) + 𝐵) = ((invg𝐺)‘𝐶))
7168, 70eqtrd 2765 . . . . . . . . . . . 12 ((𝜑𝐵𝐻𝐶𝑋) → (((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) = ((invg𝐺)‘𝐶))
7271oveq1d 7405 . . . . . . . . . . 11 ((𝜑𝐵𝐻𝐶𝑋) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘𝐶) + 𝑧))
7372adantr 480 . . . . . . . . . 10 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘𝐶) + 𝑧))
7459, 73eqtr3d 2767 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) = (((invg𝐺)‘𝐶) + 𝑧))
7551simp3d 1144 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)
7674, 75eqeltrd 2829 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)
7721, 47, 39, 2eqgval 19116 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐾𝑋) → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
7833, 46, 77syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
79783ad2ant1 1133 . . . . . . . . 9 ((𝜑𝐵𝐻𝐶𝑋) → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
8079adantr 480 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
8142, 54, 76, 80mpbir3and 1343 . . . . . . 7 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝐶) (𝐵 + 𝑧))
82 ovex 7423 . . . . . . . 8 (𝐵 + 𝑧) ∈ V
83 ovex 7423 . . . . . . . 8 (𝐵 + 𝐶) ∈ V
8482, 83elec 8720 . . . . . . 7 ((𝐵 + 𝑧) ∈ [(𝐵 + 𝐶)] ↔ (𝐵 + 𝐶) (𝐵 + 𝑧))
8581, 84sylibr 234 . . . . . 6 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝑧) ∈ [(𝐵 + 𝐶)] )
8630, 85syldan 591 . . . . 5 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝑧 ∈ [𝐶] ) → (𝐵 + 𝑧) ∈ [(𝐵 + 𝐶)] )
8786fmpttd 7090 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] ⟶[(𝐵 + 𝐶)] )
8887frnd 6699 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ⊆ [(𝐵 + 𝐶)] )
89 eqid 2730 . . . . . . . . . . 11 (𝑧𝑋 ↦ (𝐵 + 𝑧)) = (𝑧𝑋 ↦ (𝐵 + 𝑧))
9021, 39, 89grplmulf1o 18952 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1-onto𝑋)
9134, 38, 90syl2anc 584 . . . . . . . . 9 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1-onto𝑋)
92 f1of1 6802 . . . . . . . . 9 ((𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1-onto𝑋 → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1𝑋)
9391, 92syl 17 . . . . . . . 8 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1𝑋)
9423ecss 8725 . . . . . . . . 9 (𝜑 → [𝐶] 𝑋)
95943ad2ant1 1133 . . . . . . . 8 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] 𝑋)
96 f1ssres 6766 . . . . . . . 8 (((𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1𝑋 ∧ [𝐶] 𝑋) → ((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋)
9793, 95, 96syl2anc 584 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → ((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋)
98 resmpt 6011 . . . . . . . 8 ([𝐶] 𝑋 → ((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
99 f1eq1 6754 . . . . . . . 8 (((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) → (((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋 ↔ (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋))
10095, 98, 993syl 18 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → (((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋 ↔ (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋))
10197, 100mpbid 232 . . . . . 6 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋)
102 f1f1orn 6814 . . . . . 6 ((𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋 → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1-onto→ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
103101, 102syl 17 . . . . 5 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1-onto→ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
10414f1oen 8947 . . . . 5 ((𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1-onto→ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) → [𝐶] ≈ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
105 ensym 8977 . . . . 5 ([𝐶] ≈ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [𝐶] )
106103, 104, 1053syl 18 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [𝐶] )
107203ad2ant1 1133 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → 𝐾 ∈ (SubGrp‘𝐺))
10821, 2eqgen 19120 . . . . . . 7 ((𝐾 ∈ (SubGrp‘𝐺) ∧ [𝐶] ∈ (𝑋 / )) → 𝐾 ≈ [𝐶] )
109107, 6, 108syl2anc 584 . . . . . 6 ((𝜑𝐵𝐻𝐶𝑋) → 𝐾 ≈ [𝐶] )
110 ensym 8977 . . . . . 6 (𝐾 ≈ [𝐶] → [𝐶] 𝐾)
111109, 110syl 17 . . . . 5 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] 𝐾)
112 ecelqsw 8745 . . . . . . 7 (( ∈ V ∧ (𝐵 + 𝐶) ∈ 𝑋) → [(𝐵 + 𝐶)] ∈ (𝑋 / ))
1133, 41, 112sylancr 587 . . . . . 6 ((𝜑𝐵𝐻𝐶𝑋) → [(𝐵 + 𝐶)] ∈ (𝑋 / ))
11421, 2eqgen 19120 . . . . . 6 ((𝐾 ∈ (SubGrp‘𝐺) ∧ [(𝐵 + 𝐶)] ∈ (𝑋 / )) → 𝐾 ≈ [(𝐵 + 𝐶)] )
115107, 113, 114syl2anc 584 . . . . 5 ((𝜑𝐵𝐻𝐶𝑋) → 𝐾 ≈ [(𝐵 + 𝐶)] )
116 entr 8980 . . . . 5 (([𝐶] 𝐾𝐾 ≈ [(𝐵 + 𝐶)] ) → [𝐶] ≈ [(𝐵 + 𝐶)] )
117111, 115, 116syl2anc 584 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] ≈ [(𝐵 + 𝐶)] )
118 entr 8980 . . . 4 ((ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [𝐶] ∧ [𝐶] ≈ [(𝐵 + 𝐶)] ) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [(𝐵 + 𝐶)] )
119106, 117, 118syl2anc 584 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [(𝐵 + 𝐶)] )
120 fisseneq 9211 . . 3 (([(𝐵 + 𝐶)] ∈ Fin ∧ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ⊆ [(𝐵 + 𝐶)] ∧ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [(𝐵 + 𝐶)] ) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) = [(𝐵 + 𝐶)] )
12126, 88, 119, 120syl3anc 1373 . 2 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) = [(𝐵 + 𝐶)] )
12218, 121eqtrd 2765 1 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 · [𝐶] ) = [(𝐵 + 𝐶)] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  ran crn 5642  cres 5643  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cmpo 7392   Er wer 8671  [cec 8672   / cqs 8673  cen 8918  Fincfn 8921  Basecbs 17186  +gcplusg 17227  Grpcgrp 18872  invgcminusg 18873  -gcsg 18874  SubGrpcsubg 19059   ~QG cqg 19061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-eqg 19064
This theorem is referenced by:  sylow2blem2  19558  sylow2blem3  19559
  Copyright terms: Public domain W3C validator