MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow2blem1 Structured version   Visualization version   GIF version

Theorem sylow2blem1 18235
Description: Lemma for sylow2b 18238. Evaluate the group action on a left coset. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
sylow2b.x 𝑋 = (Base‘𝐺)
sylow2b.xf (𝜑𝑋 ∈ Fin)
sylow2b.h (𝜑𝐻 ∈ (SubGrp‘𝐺))
sylow2b.k (𝜑𝐾 ∈ (SubGrp‘𝐺))
sylow2b.a + = (+g𝐺)
sylow2b.r = (𝐺 ~QG 𝐾)
sylow2b.m · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
Assertion
Ref Expression
sylow2blem1 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 · [𝐶] ) = [(𝐵 + 𝐶)] )
Distinct variable groups:   𝑥,𝑦,𝑧,𝐺   𝑥,𝐾,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥, ,𝑦,𝑧   𝜑,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sylow2blem1
StepHypRef Expression
1 simp2 1131 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → 𝐵𝐻)
2 sylow2b.r . . . . 5 = (𝐺 ~QG 𝐾)
3 ovex 6821 . . . . 5 (𝐺 ~QG 𝐾) ∈ V
42, 3eqeltri 2846 . . . 4 ∈ V
5 simp3 1132 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → 𝐶𝑋)
6 ecelqsg 7952 . . . 4 (( ∈ V ∧ 𝐶𝑋) → [𝐶] ∈ (𝑋 / ))
74, 5, 6sylancr 575 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] ∈ (𝑋 / ))
8 simpr 471 . . . . . 6 ((𝑥 = 𝐵𝑦 = [𝐶] ) → 𝑦 = [𝐶] )
9 simpl 468 . . . . . . 7 ((𝑥 = 𝐵𝑦 = [𝐶] ) → 𝑥 = 𝐵)
109oveq1d 6806 . . . . . 6 ((𝑥 = 𝐵𝑦 = [𝐶] ) → (𝑥 + 𝑧) = (𝐵 + 𝑧))
118, 10mpteq12dv 4867 . . . . 5 ((𝑥 = 𝐵𝑦 = [𝐶] ) → (𝑧𝑦 ↦ (𝑥 + 𝑧)) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
1211rneqd 5489 . . . 4 ((𝑥 = 𝐵𝑦 = [𝐶] ) → ran (𝑧𝑦 ↦ (𝑥 + 𝑧)) = ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
13 sylow2b.m . . . 4 · = (𝑥𝐻, 𝑦 ∈ (𝑋 / ) ↦ ran (𝑧𝑦 ↦ (𝑥 + 𝑧)))
14 ecexg 7898 . . . . . . 7 ( ∈ V → [𝐶] ∈ V)
154, 14ax-mp 5 . . . . . 6 [𝐶] ∈ V
1615mptex 6628 . . . . 5 (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ∈ V
1716rnex 7245 . . . 4 ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ∈ V
1812, 13, 17ovmpt2a 6936 . . 3 ((𝐵𝐻 ∧ [𝐶] ∈ (𝑋 / )) → (𝐵 · [𝐶] ) = ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
191, 7, 18syl2anc 573 . 2 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 · [𝐶] ) = ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
20 sylow2b.xf . . . . 5 (𝜑𝑋 ∈ Fin)
21 sylow2b.k . . . . . . 7 (𝜑𝐾 ∈ (SubGrp‘𝐺))
22 sylow2b.x . . . . . . . 8 𝑋 = (Base‘𝐺)
2322, 2eqger 17845 . . . . . . 7 (𝐾 ∈ (SubGrp‘𝐺) → Er 𝑋)
2421, 23syl 17 . . . . . 6 (𝜑 Er 𝑋)
2524ecss 7938 . . . . 5 (𝜑 → [(𝐵 + 𝐶)] 𝑋)
26 ssfi 8334 . . . . 5 ((𝑋 ∈ Fin ∧ [(𝐵 + 𝐶)] 𝑋) → [(𝐵 + 𝐶)] ∈ Fin)
2720, 25, 26syl2anc 573 . . . 4 (𝜑 → [(𝐵 + 𝐶)] ∈ Fin)
28273ad2ant1 1127 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → [(𝐵 + 𝐶)] ∈ Fin)
29 vex 3354 . . . . . . . 8 𝑧 ∈ V
30 elecg 7935 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝐶𝑋) → (𝑧 ∈ [𝐶] 𝐶 𝑧))
3129, 5, 30sylancr 575 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] 𝐶 𝑧))
3231biimpa 462 . . . . . 6 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝑧 ∈ [𝐶] ) → 𝐶 𝑧)
33 sylow2b.h . . . . . . . . . . . 12 (𝜑𝐻 ∈ (SubGrp‘𝐺))
34 subgrcl 17800 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
3533, 34syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ Grp)
36353ad2ant1 1127 . . . . . . . . . 10 ((𝜑𝐵𝐻𝐶𝑋) → 𝐺 ∈ Grp)
3722subgss 17796 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
3833, 37syl 17 . . . . . . . . . . . 12 (𝜑𝐻𝑋)
39383ad2ant1 1127 . . . . . . . . . . 11 ((𝜑𝐵𝐻𝐶𝑋) → 𝐻𝑋)
4039, 1sseldd 3753 . . . . . . . . . 10 ((𝜑𝐵𝐻𝐶𝑋) → 𝐵𝑋)
41 sylow2b.a . . . . . . . . . . 11 + = (+g𝐺)
4222, 41grpcl 17631 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
4336, 40, 5, 42syl3anc 1476 . . . . . . . . 9 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
4443adantr 466 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝐶) ∈ 𝑋)
4536adantr 466 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → 𝐺 ∈ Grp)
4640adantr 466 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → 𝐵𝑋)
4722subgss 17796 . . . . . . . . . . . . . 14 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
4821, 47syl 17 . . . . . . . . . . . . 13 (𝜑𝐾𝑋)
49 eqid 2771 . . . . . . . . . . . . . 14 (invg𝐺) = (invg𝐺)
5022, 49, 41, 2eqgval 17844 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝐾𝑋) → (𝐶 𝑧 ↔ (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)))
5135, 48, 50syl2anc 573 . . . . . . . . . . . 12 (𝜑 → (𝐶 𝑧 ↔ (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)))
52513ad2ant1 1127 . . . . . . . . . . 11 ((𝜑𝐵𝐻𝐶𝑋) → (𝐶 𝑧 ↔ (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)))
5352biimpa 462 . . . . . . . . . 10 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐶𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾))
5453simp2d 1137 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → 𝑧𝑋)
5522, 41grpcl 17631 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝑧𝑋) → (𝐵 + 𝑧) ∈ 𝑋)
5645, 46, 54, 55syl3anc 1476 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝑧) ∈ 𝑋)
5722, 49grpinvcl 17668 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐵 + 𝐶) ∈ 𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋)
5836, 43, 57syl2anc 573 . . . . . . . . . . . 12 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋)
5958adantr 466 . . . . . . . . . . 11 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋)
6022, 41grpass 17632 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘(𝐵 + 𝐶)) ∈ 𝑋𝐵𝑋𝑧𝑋)) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)))
6145, 59, 46, 54, 60syl13anc 1478 . . . . . . . . . 10 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)))
6222, 41, 49grpinvadd 17694 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝐵𝑋𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6336, 40, 5, 62syl3anc 1476 . . . . . . . . . . . . . . 15 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6422, 49grpinvcl 17668 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝐶𝑋) → ((invg𝐺)‘𝐶) ∈ 𝑋)
6536, 5, 64syl2anc 573 . . . . . . . . . . . . . . . 16 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘𝐶) ∈ 𝑋)
66 eqid 2771 . . . . . . . . . . . . . . . . 17 (-g𝐺) = (-g𝐺)
6722, 41, 49, 66grpsubval 17666 . . . . . . . . . . . . . . . 16 ((((invg𝐺)‘𝐶) ∈ 𝑋𝐵𝑋) → (((invg𝐺)‘𝐶)(-g𝐺)𝐵) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6865, 40, 67syl2anc 573 . . . . . . . . . . . . . . 15 ((𝜑𝐵𝐻𝐶𝑋) → (((invg𝐺)‘𝐶)(-g𝐺)𝐵) = (((invg𝐺)‘𝐶) + ((invg𝐺)‘𝐵)))
6963, 68eqtr4d 2808 . . . . . . . . . . . . . 14 ((𝜑𝐵𝐻𝐶𝑋) → ((invg𝐺)‘(𝐵 + 𝐶)) = (((invg𝐺)‘𝐶)(-g𝐺)𝐵))
7069oveq1d 6806 . . . . . . . . . . . . 13 ((𝜑𝐵𝐻𝐶𝑋) → (((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) = ((((invg𝐺)‘𝐶)(-g𝐺)𝐵) + 𝐵))
7122, 41, 66grpnpcan 17708 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐶) ∈ 𝑋𝐵𝑋) → ((((invg𝐺)‘𝐶)(-g𝐺)𝐵) + 𝐵) = ((invg𝐺)‘𝐶))
7236, 65, 40, 71syl3anc 1476 . . . . . . . . . . . . 13 ((𝜑𝐵𝐻𝐶𝑋) → ((((invg𝐺)‘𝐶)(-g𝐺)𝐵) + 𝐵) = ((invg𝐺)‘𝐶))
7370, 72eqtrd 2805 . . . . . . . . . . . 12 ((𝜑𝐵𝐻𝐶𝑋) → (((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) = ((invg𝐺)‘𝐶))
7473oveq1d 6806 . . . . . . . . . . 11 ((𝜑𝐵𝐻𝐶𝑋) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘𝐶) + 𝑧))
7574adantr 466 . . . . . . . . . 10 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((((invg𝐺)‘(𝐵 + 𝐶)) + 𝐵) + 𝑧) = (((invg𝐺)‘𝐶) + 𝑧))
7661, 75eqtr3d 2807 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) = (((invg𝐺)‘𝐶) + 𝑧))
7753simp3d 1138 . . . . . . . . 9 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (((invg𝐺)‘𝐶) + 𝑧) ∈ 𝐾)
7876, 77eqeltrd 2850 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)
7922, 49, 41, 2eqgval 17844 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐾𝑋) → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
8035, 48, 79syl2anc 573 . . . . . . . . . 10 (𝜑 → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
81803ad2ant1 1127 . . . . . . . . 9 ((𝜑𝐵𝐻𝐶𝑋) → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
8281adantr 466 . . . . . . . 8 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → ((𝐵 + 𝐶) (𝐵 + 𝑧) ↔ ((𝐵 + 𝐶) ∈ 𝑋 ∧ (𝐵 + 𝑧) ∈ 𝑋 ∧ (((invg𝐺)‘(𝐵 + 𝐶)) + (𝐵 + 𝑧)) ∈ 𝐾)))
8344, 56, 78, 82mpbir3and 1427 . . . . . . 7 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝐶) (𝐵 + 𝑧))
84 ovex 6821 . . . . . . . 8 (𝐵 + 𝑧) ∈ V
85 ovex 6821 . . . . . . . 8 (𝐵 + 𝐶) ∈ V
8684, 85elec 7936 . . . . . . 7 ((𝐵 + 𝑧) ∈ [(𝐵 + 𝐶)] ↔ (𝐵 + 𝐶) (𝐵 + 𝑧))
8783, 86sylibr 224 . . . . . 6 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝐶 𝑧) → (𝐵 + 𝑧) ∈ [(𝐵 + 𝐶)] )
8832, 87syldan 579 . . . . 5 (((𝜑𝐵𝐻𝐶𝑋) ∧ 𝑧 ∈ [𝐶] ) → (𝐵 + 𝑧) ∈ [(𝐵 + 𝐶)] )
89 eqid 2771 . . . . 5 (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧))
9088, 89fmptd 6525 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] ⟶[(𝐵 + 𝐶)] )
91 frn 6191 . . . 4 ((𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] ⟶[(𝐵 + 𝐶)] → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ⊆ [(𝐵 + 𝐶)] )
9290, 91syl 17 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ⊆ [(𝐵 + 𝐶)] )
93 eqid 2771 . . . . . . . . . . 11 (𝑧𝑋 ↦ (𝐵 + 𝑧)) = (𝑧𝑋 ↦ (𝐵 + 𝑧))
9422, 41, 93grplmulf1o 17690 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1-onto𝑋)
9536, 40, 94syl2anc 573 . . . . . . . . 9 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1-onto𝑋)
96 f1of1 6275 . . . . . . . . 9 ((𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1-onto𝑋 → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1𝑋)
9795, 96syl 17 . . . . . . . 8 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1𝑋)
9824ecss 7938 . . . . . . . . 9 (𝜑 → [𝐶] 𝑋)
99983ad2ant1 1127 . . . . . . . 8 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] 𝑋)
100 f1ssres 6246 . . . . . . . 8 (((𝑧𝑋 ↦ (𝐵 + 𝑧)):𝑋1-1𝑋 ∧ [𝐶] 𝑋) → ((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋)
10197, 99, 100syl2anc 573 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → ((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋)
102 resmpt 5588 . . . . . . . 8 ([𝐶] 𝑋 → ((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
103 f1eq1 6234 . . . . . . . 8 (((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ) = (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) → (((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋 ↔ (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋))
10499, 102, 1033syl 18 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → (((𝑧𝑋 ↦ (𝐵 + 𝑧)) ↾ [𝐶] ):[𝐶] 1-1𝑋 ↔ (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋))
105101, 104mpbid 222 . . . . . 6 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋)
106 f1f1orn 6287 . . . . . 6 ((𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1𝑋 → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1-onto→ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
107105, 106syl 17 . . . . 5 ((𝜑𝐵𝐻𝐶𝑋) → (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1-onto→ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
10815f1oen 8128 . . . . 5 ((𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)):[𝐶] 1-1-onto→ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) → [𝐶] ≈ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)))
109 ensym 8156 . . . . 5 ([𝐶] ≈ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [𝐶] )
110107, 108, 1093syl 18 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [𝐶] )
111213ad2ant1 1127 . . . . . . 7 ((𝜑𝐵𝐻𝐶𝑋) → 𝐾 ∈ (SubGrp‘𝐺))
11222, 2eqgen 17848 . . . . . . 7 ((𝐾 ∈ (SubGrp‘𝐺) ∧ [𝐶] ∈ (𝑋 / )) → 𝐾 ≈ [𝐶] )
113111, 7, 112syl2anc 573 . . . . . 6 ((𝜑𝐵𝐻𝐶𝑋) → 𝐾 ≈ [𝐶] )
114 ensym 8156 . . . . . 6 (𝐾 ≈ [𝐶] → [𝐶] 𝐾)
115113, 114syl 17 . . . . 5 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] 𝐾)
116 ecelqsg 7952 . . . . . . 7 (( ∈ V ∧ (𝐵 + 𝐶) ∈ 𝑋) → [(𝐵 + 𝐶)] ∈ (𝑋 / ))
1174, 43, 116sylancr 575 . . . . . 6 ((𝜑𝐵𝐻𝐶𝑋) → [(𝐵 + 𝐶)] ∈ (𝑋 / ))
11822, 2eqgen 17848 . . . . . 6 ((𝐾 ∈ (SubGrp‘𝐺) ∧ [(𝐵 + 𝐶)] ∈ (𝑋 / )) → 𝐾 ≈ [(𝐵 + 𝐶)] )
119111, 117, 118syl2anc 573 . . . . 5 ((𝜑𝐵𝐻𝐶𝑋) → 𝐾 ≈ [(𝐵 + 𝐶)] )
120 entr 8159 . . . . 5 (([𝐶] 𝐾𝐾 ≈ [(𝐵 + 𝐶)] ) → [𝐶] ≈ [(𝐵 + 𝐶)] )
121115, 119, 120syl2anc 573 . . . 4 ((𝜑𝐵𝐻𝐶𝑋) → [𝐶] ≈ [(𝐵 + 𝐶)] )
122 entr 8159 . . . 4 ((ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [𝐶] ∧ [𝐶] ≈ [(𝐵 + 𝐶)] ) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [(𝐵 + 𝐶)] )
123110, 121, 122syl2anc 573 . . 3 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [(𝐵 + 𝐶)] )
124 fisseneq 8325 . . 3 (([(𝐵 + 𝐶)] ∈ Fin ∧ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ⊆ [(𝐵 + 𝐶)] ∧ ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) ≈ [(𝐵 + 𝐶)] ) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) = [(𝐵 + 𝐶)] )
12528, 92, 123, 124syl3anc 1476 . 2 ((𝜑𝐵𝐻𝐶𝑋) → ran (𝑧 ∈ [𝐶] ↦ (𝐵 + 𝑧)) = [(𝐵 + 𝐶)] )
12619, 125eqtrd 2805 1 ((𝜑𝐵𝐻𝐶𝑋) → (𝐵 · [𝐶] ) = [(𝐵 + 𝐶)] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  Vcvv 3351  wss 3723   class class class wbr 4786  cmpt 4863  ran crn 5250  cres 5251  wf 6025  1-1wf1 6026  1-1-ontowf1o 6028  cfv 6029  (class class class)co 6791  cmpt2 6793   Er wer 7891  [cec 7892   / cqs 7893  cen 8104  Fincfn 8107  Basecbs 16057  +gcplusg 16142  Grpcgrp 17623  invgcminusg 17624  -gcsg 17625  SubGrpcsubg 17789   ~QG cqg 17791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-er 7894  df-ec 7896  df-qs 7900  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-2 11279  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-0g 16303  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-eqg 17794
This theorem is referenced by:  sylow2blem2  18236  sylow2blem3  18237
  Copyright terms: Public domain W3C validator