![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edgov | Structured version Visualization version GIF version |
Description: The edges of a graph represented as ordered pair, shown as operation value. Although a little less intuitive, this representation is often used because it is shorter than the representation as function value of a graph given as ordered pair, see edgopval 28804. The representation ran 𝐸 for the set of edges is even shorter, though. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 13-Oct-2020.) |
Ref | Expression |
---|---|
edgov | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉Edg𝐸) = ran 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7405 | . 2 ⊢ (𝑉Edg𝐸) = (Edg‘⟨𝑉, 𝐸⟩) | |
2 | edgopval 28804 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Edg‘⟨𝑉, 𝐸⟩) = ran 𝐸) | |
3 | 1, 2 | eqtrid 2776 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝑉Edg𝐸) = ran 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⟨cop 4627 ran crn 5668 ‘cfv 6534 (class class class)co 7402 Edgcedg 28800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6486 df-fun 6536 df-fv 6542 df-ov 7405 df-2nd 7970 df-iedg 28752 df-edg 28801 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |