MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgov Structured version   Visualization version   GIF version

Theorem edgov 29041
Description: The edges of a graph represented as ordered pair, shown as operation value. Although a little less intuitive, this representation is often used because it is shorter than the representation as function value of a graph given as ordered pair, see edgopval 29040. The representation ran 𝐸 for the set of edges is even shorter, though. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 13-Oct-2020.)
Assertion
Ref Expression
edgov ((𝑉𝑊𝐸𝑋) → (𝑉Edg𝐸) = ran 𝐸)

Proof of Theorem edgov
StepHypRef Expression
1 df-ov 7358 . 2 (𝑉Edg𝐸) = (Edg‘⟨𝑉, 𝐸⟩)
2 edgopval 29040 . 2 ((𝑉𝑊𝐸𝑋) → (Edg‘⟨𝑉, 𝐸⟩) = ran 𝐸)
31, 2eqtrid 2780 1 ((𝑉𝑊𝐸𝑋) → (𝑉Edg𝐸) = ran 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4583  ran crn 5622  cfv 6489  (class class class)co 7355  Edgcedg 29036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-2nd 7931  df-iedg 28988  df-edg 29037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator