 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgov Structured version   Visualization version   GIF version

Theorem edgov 26351
 Description: The edges of a graph represented as ordered pair, shown as operation value. Although a little less intuitive, this representation is often used because it is shorter than the representation as function value of a graph given as ordered pair, see edgopval 26350. The representation ran 𝐸 for the set of edges is even shorter, though. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 13-Oct-2020.)
Assertion
Ref Expression
edgov ((𝑉𝑊𝐸𝑋) → (𝑉Edg𝐸) = ran 𝐸)

Proof of Theorem edgov
StepHypRef Expression
1 df-ov 6909 . 2 (𝑉Edg𝐸) = (Edg‘⟨𝑉, 𝐸⟩)
2 edgopval 26350 . 2 ((𝑉𝑊𝐸𝑋) → (Edg‘⟨𝑉, 𝐸⟩) = ran 𝐸)
31, 2syl5eq 2874 1 ((𝑉𝑊𝐸𝑋) → (𝑉Edg𝐸) = ran 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1658   ∈ wcel 2166  ⟨cop 4404  ran crn 5344  ‘cfv 6124  (class class class)co 6906  Edgcedg 26346 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-iota 6087  df-fun 6126  df-fv 6132  df-ov 6909  df-2nd 7430  df-iedg 26298  df-edg 26347 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator