MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgov Structured version   Visualization version   GIF version

Theorem edgov 27531
Description: The edges of a graph represented as ordered pair, shown as operation value. Although a little less intuitive, this representation is often used because it is shorter than the representation as function value of a graph given as ordered pair, see edgopval 27530. The representation ran 𝐸 for the set of edges is even shorter, though. (Contributed by AV, 2-Jan-2020.) (Revised by AV, 13-Oct-2020.)
Assertion
Ref Expression
edgov ((𝑉𝑊𝐸𝑋) → (𝑉Edg𝐸) = ran 𝐸)

Proof of Theorem edgov
StepHypRef Expression
1 df-ov 7318 . 2 (𝑉Edg𝐸) = (Edg‘⟨𝑉, 𝐸⟩)
2 edgopval 27530 . 2 ((𝑉𝑊𝐸𝑋) → (Edg‘⟨𝑉, 𝐸⟩) = ran 𝐸)
31, 2eqtrid 2789 1 ((𝑉𝑊𝐸𝑋) → (𝑉Edg𝐸) = ran 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cop 4577  ran crn 5608  cfv 6465  (class class class)co 7315  Edgcedg 27526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-iota 6417  df-fun 6467  df-fv 6473  df-ov 7318  df-2nd 7877  df-iedg 27478  df-edg 27527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator