![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edgopval | Structured version Visualization version GIF version |
Description: The edges of a graph represented as ordered pair. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.) |
Ref | Expression |
---|---|
edgopval | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Edg‘〈𝑉, 𝐸〉) = ran 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 28985 | . 2 ⊢ (Edg‘〈𝑉, 𝐸〉) = ran (iEdg‘〈𝑉, 𝐸〉) | |
2 | opiedgfv 28943 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
3 | 2 | rneqd 5944 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → ran (iEdg‘〈𝑉, 𝐸〉) = ran 𝐸) |
4 | 1, 3 | eqtrid 2778 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Edg‘〈𝑉, 𝐸〉) = ran 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 〈cop 4639 ran crn 5683 ‘cfv 6554 iEdgciedg 28933 Edgcedg 28983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6506 df-fun 6556 df-fv 6562 df-2nd 8004 df-iedg 28935 df-edg 28984 |
This theorem is referenced by: edgov 28988 cusgrsize 29391 uspgrloopedg 29455 uspgrsprfo 47525 |
Copyright terms: Public domain | W3C validator |