MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgopval Structured version   Visualization version   GIF version

Theorem edgopval 29027
Description: The edges of a graph represented as ordered pair. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 13-Oct-2020.)
Assertion
Ref Expression
edgopval ((𝑉𝑊𝐸𝑋) → (Edg‘⟨𝑉, 𝐸⟩) = ran 𝐸)

Proof of Theorem edgopval
StepHypRef Expression
1 edgval 29025 . 2 (Edg‘⟨𝑉, 𝐸⟩) = ran (iEdg‘⟨𝑉, 𝐸⟩)
2 opiedgfv 28983 . . 3 ((𝑉𝑊𝐸𝑋) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
32rneqd 5878 . 2 ((𝑉𝑊𝐸𝑋) → ran (iEdg‘⟨𝑉, 𝐸⟩) = ran 𝐸)
41, 3eqtrid 2778 1 ((𝑉𝑊𝐸𝑋) → (Edg‘⟨𝑉, 𝐸⟩) = ran 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4582  ran crn 5617  cfv 6481  iEdgciedg 28973  Edgcedg 29023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-2nd 7922  df-iedg 28975  df-edg 29024
This theorem is referenced by:  edgov  29028  cusgrsize  29431  uspgrloopedg  29495  uspgrsprfo  48178
  Copyright terms: Public domain W3C validator